This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the recursive definition generator at a successor (special case where the characteristic function is an ordered-pair class abstraction and where the mapping class D is a proper class). This is a technical lemma that can be used together with rdgsucmptf to help eliminate redundant sethood antecedents. (Contributed by NM, 22-Oct-2003) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rdgsucmptf.1 | |- F/_ x A |
|
| rdgsucmptf.2 | |- F/_ x B |
||
| rdgsucmptf.3 | |- F/_ x D |
||
| rdgsucmptf.4 | |- F = rec ( ( x e. _V |-> C ) , A ) |
||
| rdgsucmptf.5 | |- ( x = ( F ` B ) -> C = D ) |
||
| Assertion | rdgsucmptnf | |- ( -. D e. _V -> ( F ` suc B ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsucmptf.1 | |- F/_ x A |
|
| 2 | rdgsucmptf.2 | |- F/_ x B |
|
| 3 | rdgsucmptf.3 | |- F/_ x D |
|
| 4 | rdgsucmptf.4 | |- F = rec ( ( x e. _V |-> C ) , A ) |
|
| 5 | rdgsucmptf.5 | |- ( x = ( F ` B ) -> C = D ) |
|
| 6 | 4 | fveq1i | |- ( F ` suc B ) = ( rec ( ( x e. _V |-> C ) , A ) ` suc B ) |
| 7 | rdgdmlim | |- Lim dom rec ( ( x e. _V |-> C ) , A ) |
|
| 8 | limsuc | |- ( Lim dom rec ( ( x e. _V |-> C ) , A ) -> ( B e. dom rec ( ( x e. _V |-> C ) , A ) <-> suc B e. dom rec ( ( x e. _V |-> C ) , A ) ) ) |
|
| 9 | 7 8 | ax-mp | |- ( B e. dom rec ( ( x e. _V |-> C ) , A ) <-> suc B e. dom rec ( ( x e. _V |-> C ) , A ) ) |
| 10 | rdgsucg | |- ( B e. dom rec ( ( x e. _V |-> C ) , A ) -> ( rec ( ( x e. _V |-> C ) , A ) ` suc B ) = ( ( x e. _V |-> C ) ` ( rec ( ( x e. _V |-> C ) , A ) ` B ) ) ) |
|
| 11 | 4 | fveq1i | |- ( F ` B ) = ( rec ( ( x e. _V |-> C ) , A ) ` B ) |
| 12 | 11 | fveq2i | |- ( ( x e. _V |-> C ) ` ( F ` B ) ) = ( ( x e. _V |-> C ) ` ( rec ( ( x e. _V |-> C ) , A ) ` B ) ) |
| 13 | 10 12 | eqtr4di | |- ( B e. dom rec ( ( x e. _V |-> C ) , A ) -> ( rec ( ( x e. _V |-> C ) , A ) ` suc B ) = ( ( x e. _V |-> C ) ` ( F ` B ) ) ) |
| 14 | nfmpt1 | |- F/_ x ( x e. _V |-> C ) |
|
| 15 | 14 1 | nfrdg | |- F/_ x rec ( ( x e. _V |-> C ) , A ) |
| 16 | 4 15 | nfcxfr | |- F/_ x F |
| 17 | 16 2 | nffv | |- F/_ x ( F ` B ) |
| 18 | eqid | |- ( x e. _V |-> C ) = ( x e. _V |-> C ) |
|
| 19 | 17 3 5 18 | fvmptnf | |- ( -. D e. _V -> ( ( x e. _V |-> C ) ` ( F ` B ) ) = (/) ) |
| 20 | 13 19 | sylan9eqr | |- ( ( -. D e. _V /\ B e. dom rec ( ( x e. _V |-> C ) , A ) ) -> ( rec ( ( x e. _V |-> C ) , A ) ` suc B ) = (/) ) |
| 21 | 20 | ex | |- ( -. D e. _V -> ( B e. dom rec ( ( x e. _V |-> C ) , A ) -> ( rec ( ( x e. _V |-> C ) , A ) ` suc B ) = (/) ) ) |
| 22 | 9 21 | biimtrrid | |- ( -. D e. _V -> ( suc B e. dom rec ( ( x e. _V |-> C ) , A ) -> ( rec ( ( x e. _V |-> C ) , A ) ` suc B ) = (/) ) ) |
| 23 | ndmfv | |- ( -. suc B e. dom rec ( ( x e. _V |-> C ) , A ) -> ( rec ( ( x e. _V |-> C ) , A ) ` suc B ) = (/) ) |
|
| 24 | 22 23 | pm2.61d1 | |- ( -. D e. _V -> ( rec ( ( x e. _V |-> C ) , A ) ` suc B ) = (/) ) |
| 25 | 6 24 | eqtrid | |- ( -. D e. _V -> ( F ` suc B ) = (/) ) |