This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the recursive definition generator at a successor (special case where the characteristic function is an ordered-pair class abstraction and where the mapping class D is a proper class). This is a technical lemma that can be used together with rdgsucmptf to help eliminate redundant sethood antecedents. (Contributed by NM, 22-Oct-2003) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rdgsucmptf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| rdgsucmptf.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| rdgsucmptf.3 | ⊢ Ⅎ 𝑥 𝐷 | ||
| rdgsucmptf.4 | ⊢ 𝐹 = rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) | ||
| rdgsucmptf.5 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝐵 ) → 𝐶 = 𝐷 ) | ||
| Assertion | rdgsucmptnf | ⊢ ( ¬ 𝐷 ∈ V → ( 𝐹 ‘ suc 𝐵 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsucmptf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | rdgsucmptf.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | rdgsucmptf.3 | ⊢ Ⅎ 𝑥 𝐷 | |
| 4 | rdgsucmptf.4 | ⊢ 𝐹 = rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) | |
| 5 | rdgsucmptf.5 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝐵 ) → 𝐶 = 𝐷 ) | |
| 6 | 4 | fveq1i | ⊢ ( 𝐹 ‘ suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ suc 𝐵 ) |
| 7 | rdgdmlim | ⊢ Lim dom rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) | |
| 8 | limsuc | ⊢ ( Lim dom rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) → ( 𝐵 ∈ dom rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↔ suc 𝐵 ∈ dom rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( 𝐵 ∈ dom rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↔ suc 𝐵 ∈ dom rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ) |
| 10 | rdgsucg | ⊢ ( 𝐵 ∈ dom rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) → ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ 𝐵 ) ) ) | |
| 11 | 4 | fveq1i | ⊢ ( 𝐹 ‘ 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ 𝐵 ) |
| 12 | 11 | fveq2i | ⊢ ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ 𝐵 ) ) |
| 13 | 10 12 | eqtr4di | ⊢ ( 𝐵 ∈ dom rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) → ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 14 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ V ↦ 𝐶 ) | |
| 15 | 14 1 | nfrdg | ⊢ Ⅎ 𝑥 rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) |
| 16 | 4 15 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 17 | 16 2 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐵 ) |
| 18 | eqid | ⊢ ( 𝑥 ∈ V ↦ 𝐶 ) = ( 𝑥 ∈ V ↦ 𝐶 ) | |
| 19 | 17 3 5 18 | fvmptnf | ⊢ ( ¬ 𝐷 ∈ V → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = ∅ ) |
| 20 | 13 19 | sylan9eqr | ⊢ ( ( ¬ 𝐷 ∈ V ∧ 𝐵 ∈ dom rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ) → ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ suc 𝐵 ) = ∅ ) |
| 21 | 20 | ex | ⊢ ( ¬ 𝐷 ∈ V → ( 𝐵 ∈ dom rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) → ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ suc 𝐵 ) = ∅ ) ) |
| 22 | 9 21 | biimtrrid | ⊢ ( ¬ 𝐷 ∈ V → ( suc 𝐵 ∈ dom rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) → ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ suc 𝐵 ) = ∅ ) ) |
| 23 | ndmfv | ⊢ ( ¬ suc 𝐵 ∈ dom rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) → ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ suc 𝐵 ) = ∅ ) | |
| 24 | 22 23 | pm2.61d1 | ⊢ ( ¬ 𝐷 ∈ V → ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ suc 𝐵 ) = ∅ ) |
| 25 | 6 24 | eqtrid | ⊢ ( ¬ 𝐷 ∈ V → ( 𝐹 ‘ suc 𝐵 ) = ∅ ) |