This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the recursive definition generator at a successor. (Contributed by NM, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdgsucg | |- ( B e. dom rec ( F , A ) -> ( rec ( F , A ) ` suc B ) = ( F ` ( rec ( F , A ) ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgdmlim | |- Lim dom rec ( F , A ) |
|
| 2 | limsuc | |- ( Lim dom rec ( F , A ) -> ( B e. dom rec ( F , A ) <-> suc B e. dom rec ( F , A ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( B e. dom rec ( F , A ) <-> suc B e. dom rec ( F , A ) ) |
| 4 | eqid | |- ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) = ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) |
|
| 5 | rdgvalg | |- ( y e. dom rec ( F , A ) -> ( rec ( F , A ) ` y ) = ( ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) ` ( rec ( F , A ) |` y ) ) ) |
|
| 6 | rdgseg | |- ( y e. dom rec ( F , A ) -> ( rec ( F , A ) |` y ) e. _V ) |
|
| 7 | rdgfun | |- Fun rec ( F , A ) |
|
| 8 | funfn | |- ( Fun rec ( F , A ) <-> rec ( F , A ) Fn dom rec ( F , A ) ) |
|
| 9 | 7 8 | mpbi | |- rec ( F , A ) Fn dom rec ( F , A ) |
| 10 | limord | |- ( Lim dom rec ( F , A ) -> Ord dom rec ( F , A ) ) |
|
| 11 | 1 10 | ax-mp | |- Ord dom rec ( F , A ) |
| 12 | 4 5 6 9 11 | tz7.44-2 | |- ( suc B e. dom rec ( F , A ) -> ( rec ( F , A ) ` suc B ) = ( F ` ( rec ( F , A ) ` B ) ) ) |
| 13 | 3 12 | sylbi | |- ( B e. dom rec ( F , A ) -> ( rec ( F , A ) ` suc B ) = ( F ` ( rec ( F , A ) ` B ) ) ) |