This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This version of rdgsucmpt avoids the not-free hypothesis of rdgsucmptf by using two substitutions instead of one. (Contributed by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rdgsucmpt2.1 | |- F = rec ( ( x e. _V |-> C ) , A ) |
|
| rdgsucmpt2.2 | |- ( y = x -> E = C ) |
||
| rdgsucmpt2.3 | |- ( y = ( F ` B ) -> E = D ) |
||
| Assertion | rdgsucmpt2 | |- ( ( B e. On /\ D e. V ) -> ( F ` suc B ) = D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsucmpt2.1 | |- F = rec ( ( x e. _V |-> C ) , A ) |
|
| 2 | rdgsucmpt2.2 | |- ( y = x -> E = C ) |
|
| 3 | rdgsucmpt2.3 | |- ( y = ( F ` B ) -> E = D ) |
|
| 4 | nfcv | |- F/_ y A |
|
| 5 | nfcv | |- F/_ y B |
|
| 6 | nfcv | |- F/_ y D |
|
| 7 | 2 | cbvmptv | |- ( y e. _V |-> E ) = ( x e. _V |-> C ) |
| 8 | rdgeq1 | |- ( ( y e. _V |-> E ) = ( x e. _V |-> C ) -> rec ( ( y e. _V |-> E ) , A ) = rec ( ( x e. _V |-> C ) , A ) ) |
|
| 9 | 7 8 | ax-mp | |- rec ( ( y e. _V |-> E ) , A ) = rec ( ( x e. _V |-> C ) , A ) |
| 10 | 1 9 | eqtr4i | |- F = rec ( ( y e. _V |-> E ) , A ) |
| 11 | 4 5 6 10 3 | rdgsucmptf | |- ( ( B e. On /\ D e. V ) -> ( F ` suc B ) = D ) |