This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a function given by an ordered-pair class abstraction is the empty set when the class it would otherwise map to is a proper class. This version of fvmptn uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 21-Oct-2003) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptf.1 | |- F/_ x A |
|
| fvmptf.2 | |- F/_ x C |
||
| fvmptf.3 | |- ( x = A -> B = C ) |
||
| fvmptf.4 | |- F = ( x e. D |-> B ) |
||
| Assertion | fvmptnf | |- ( -. C e. _V -> ( F ` A ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptf.1 | |- F/_ x A |
|
| 2 | fvmptf.2 | |- F/_ x C |
|
| 3 | fvmptf.3 | |- ( x = A -> B = C ) |
|
| 4 | fvmptf.4 | |- F = ( x e. D |-> B ) |
|
| 5 | 4 | dmmptss | |- dom F C_ D |
| 6 | 5 | sseli | |- ( A e. dom F -> A e. D ) |
| 7 | eqid | |- ( x e. D |-> ( _I ` B ) ) = ( x e. D |-> ( _I ` B ) ) |
|
| 8 | 4 7 | fvmptex | |- ( F ` A ) = ( ( x e. D |-> ( _I ` B ) ) ` A ) |
| 9 | fvex | |- ( _I ` C ) e. _V |
|
| 10 | nfcv | |- F/_ x _I |
|
| 11 | 10 2 | nffv | |- F/_ x ( _I ` C ) |
| 12 | 3 | fveq2d | |- ( x = A -> ( _I ` B ) = ( _I ` C ) ) |
| 13 | 1 11 12 7 | fvmptf | |- ( ( A e. D /\ ( _I ` C ) e. _V ) -> ( ( x e. D |-> ( _I ` B ) ) ` A ) = ( _I ` C ) ) |
| 14 | 9 13 | mpan2 | |- ( A e. D -> ( ( x e. D |-> ( _I ` B ) ) ` A ) = ( _I ` C ) ) |
| 15 | 8 14 | eqtrid | |- ( A e. D -> ( F ` A ) = ( _I ` C ) ) |
| 16 | fvprc | |- ( -. C e. _V -> ( _I ` C ) = (/) ) |
|
| 17 | 15 16 | sylan9eq | |- ( ( A e. D /\ -. C e. _V ) -> ( F ` A ) = (/) ) |
| 18 | 17 | expcom | |- ( -. C e. _V -> ( A e. D -> ( F ` A ) = (/) ) ) |
| 19 | 6 18 | syl5 | |- ( -. C e. _V -> ( A e. dom F -> ( F ` A ) = (/) ) ) |
| 20 | ndmfv | |- ( -. A e. dom F -> ( F ` A ) = (/) ) |
|
| 21 | 19 20 | pm2.61d1 | |- ( -. C e. _V -> ( F ` A ) = (/) ) |