This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the rank function at a non-well-founded set. (The antecedent is always false under Foundation, by unir1 , unless A is a proper class.) (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 10-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankvaln | |- ( -. A e. U. ( R1 " On ) -> ( rank ` A ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankf | |- rank : U. ( R1 " On ) --> On |
|
| 2 | 1 | fdmi | |- dom rank = U. ( R1 " On ) |
| 3 | 2 | eleq2i | |- ( A e. dom rank <-> A e. U. ( R1 " On ) ) |
| 4 | ndmfv | |- ( -. A e. dom rank -> ( rank ` A ) = (/) ) |
|
| 5 | 3 4 | sylnbir | |- ( -. A e. U. ( R1 " On ) -> ( rank ` A ) = (/) ) |