This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of TakeutiZaring p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limomss | |- ( Lim A -> _om C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord | |- ( Lim A -> Ord A ) |
|
| 2 | ordeleqon | |- ( Ord A <-> ( A e. On \/ A = On ) ) |
|
| 3 | elom | |- ( x e. _om <-> ( x e. On /\ A. y ( Lim y -> x e. y ) ) ) |
|
| 4 | 3 | simprbi | |- ( x e. _om -> A. y ( Lim y -> x e. y ) ) |
| 5 | limeq | |- ( y = A -> ( Lim y <-> Lim A ) ) |
|
| 6 | eleq2 | |- ( y = A -> ( x e. y <-> x e. A ) ) |
|
| 7 | 5 6 | imbi12d | |- ( y = A -> ( ( Lim y -> x e. y ) <-> ( Lim A -> x e. A ) ) ) |
| 8 | 7 | spcgv | |- ( A e. On -> ( A. y ( Lim y -> x e. y ) -> ( Lim A -> x e. A ) ) ) |
| 9 | 4 8 | syl5 | |- ( A e. On -> ( x e. _om -> ( Lim A -> x e. A ) ) ) |
| 10 | 9 | com23 | |- ( A e. On -> ( Lim A -> ( x e. _om -> x e. A ) ) ) |
| 11 | 10 | imp | |- ( ( A e. On /\ Lim A ) -> ( x e. _om -> x e. A ) ) |
| 12 | 11 | ssrdv | |- ( ( A e. On /\ Lim A ) -> _om C_ A ) |
| 13 | 12 | ex | |- ( A e. On -> ( Lim A -> _om C_ A ) ) |
| 14 | omsson | |- _om C_ On |
|
| 15 | sseq2 | |- ( A = On -> ( _om C_ A <-> _om C_ On ) ) |
|
| 16 | 14 15 | mpbiri | |- ( A = On -> _om C_ A ) |
| 17 | 16 | a1d | |- ( A = On -> ( Lim A -> _om C_ A ) ) |
| 18 | 13 17 | jaoi | |- ( ( A e. On \/ A = On ) -> ( Lim A -> _om C_ A ) ) |
| 19 | 2 18 | sylbi | |- ( Ord A -> ( Lim A -> _om C_ A ) ) |
| 20 | 1 19 | mpcom | |- ( Lim A -> _om C_ A ) |