This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the rank function. Definition 9.14 of TakeutiZaring p. 79 (proved as a theorem from our definition). This variant of rankval does not use Regularity, and so requires the assumption that A is in the range of R1 . (Contributed by NM, 11-Oct-2003) (Revised by Mario Carneiro, 10-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankvalb | |- ( A e. U. ( R1 " On ) -> ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rank | |- rank = ( y e. _V |-> |^| { x e. On | y e. ( R1 ` suc x ) } ) |
|
| 2 | eleq1 | |- ( y = A -> ( y e. ( R1 ` suc x ) <-> A e. ( R1 ` suc x ) ) ) |
|
| 3 | 2 | rabbidv | |- ( y = A -> { x e. On | y e. ( R1 ` suc x ) } = { x e. On | A e. ( R1 ` suc x ) } ) |
| 4 | 3 | inteqd | |- ( y = A -> |^| { x e. On | y e. ( R1 ` suc x ) } = |^| { x e. On | A e. ( R1 ` suc x ) } ) |
| 5 | elex | |- ( A e. U. ( R1 " On ) -> A e. _V ) |
|
| 6 | rankwflemb | |- ( A e. U. ( R1 " On ) <-> E. x e. On A e. ( R1 ` suc x ) ) |
|
| 7 | intexrab | |- ( E. x e. On A e. ( R1 ` suc x ) <-> |^| { x e. On | A e. ( R1 ` suc x ) } e. _V ) |
|
| 8 | 6 7 | sylbb | |- ( A e. U. ( R1 " On ) -> |^| { x e. On | A e. ( R1 ` suc x ) } e. _V ) |
| 9 | 1 4 5 8 | fvmptd3 | |- ( A e. U. ( R1 " On ) -> ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) } ) |