This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ring operation in a quotient ring by a two-sided ideal. (Contributed by Thierry Arnoux, 1-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusmul2idl.h | |- Q = ( R /s ( R ~QG I ) ) |
|
| qusmul2idl.v | |- B = ( Base ` R ) |
||
| qusmul2idl.p | |- .x. = ( .r ` R ) |
||
| qusmul2idl.a | |- .X. = ( .r ` Q ) |
||
| qusmul2idl.1 | |- ( ph -> R e. Ring ) |
||
| qusmul2idl.2 | |- ( ph -> I e. ( 2Ideal ` R ) ) |
||
| qusmul2idl.3 | |- ( ph -> X e. B ) |
||
| qusmul2idl.4 | |- ( ph -> Y e. B ) |
||
| Assertion | qusmul2idl | |- ( ph -> ( [ X ] ( R ~QG I ) .X. [ Y ] ( R ~QG I ) ) = [ ( X .x. Y ) ] ( R ~QG I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusmul2idl.h | |- Q = ( R /s ( R ~QG I ) ) |
|
| 2 | qusmul2idl.v | |- B = ( Base ` R ) |
|
| 3 | qusmul2idl.p | |- .x. = ( .r ` R ) |
|
| 4 | qusmul2idl.a | |- .X. = ( .r ` Q ) |
|
| 5 | qusmul2idl.1 | |- ( ph -> R e. Ring ) |
|
| 6 | qusmul2idl.2 | |- ( ph -> I e. ( 2Ideal ` R ) ) |
|
| 7 | qusmul2idl.3 | |- ( ph -> X e. B ) |
|
| 8 | qusmul2idl.4 | |- ( ph -> Y e. B ) |
|
| 9 | 1 | a1i | |- ( ph -> Q = ( R /s ( R ~QG I ) ) ) |
| 10 | 2 | a1i | |- ( ph -> B = ( Base ` R ) ) |
| 11 | 6 | 2idllidld | |- ( ph -> I e. ( LIdeal ` R ) ) |
| 12 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
| 13 | 12 | lidlsubg | |- ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> I e. ( SubGrp ` R ) ) |
| 14 | 5 11 13 | syl2anc | |- ( ph -> I e. ( SubGrp ` R ) ) |
| 15 | eqid | |- ( R ~QG I ) = ( R ~QG I ) |
|
| 16 | 2 15 | eqger | |- ( I e. ( SubGrp ` R ) -> ( R ~QG I ) Er B ) |
| 17 | 14 16 | syl | |- ( ph -> ( R ~QG I ) Er B ) |
| 18 | eqid | |- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
|
| 19 | 2 15 18 3 | 2idlcpbl | |- ( ( R e. Ring /\ I e. ( 2Ideal ` R ) ) -> ( ( x ( R ~QG I ) y /\ z ( R ~QG I ) t ) -> ( x .x. z ) ( R ~QG I ) ( y .x. t ) ) ) |
| 20 | 5 6 19 | syl2anc | |- ( ph -> ( ( x ( R ~QG I ) y /\ z ( R ~QG I ) t ) -> ( x .x. z ) ( R ~QG I ) ( y .x. t ) ) ) |
| 21 | 2 3 | ringcl | |- ( ( R e. Ring /\ p e. B /\ q e. B ) -> ( p .x. q ) e. B ) |
| 22 | 21 | 3expb | |- ( ( R e. Ring /\ ( p e. B /\ q e. B ) ) -> ( p .x. q ) e. B ) |
| 23 | 5 22 | sylan | |- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( p .x. q ) e. B ) |
| 24 | 23 | caovclg | |- ( ( ph /\ ( y e. B /\ t e. B ) ) -> ( y .x. t ) e. B ) |
| 25 | 9 10 17 5 20 24 3 4 | qusmulval | |- ( ( ph /\ X e. B /\ Y e. B ) -> ( [ X ] ( R ~QG I ) .X. [ Y ] ( R ~QG I ) ) = [ ( X .x. Y ) ] ( R ~QG I ) ) |
| 26 | 7 8 25 | mpd3an23 | |- ( ph -> ( [ X ] ( R ~QG I ) .X. [ Y ] ( R ~QG I ) ) = [ ( X .x. Y ) ] ( R ~QG I ) ) |