This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crng2idl.i | |- I = ( LIdeal ` R ) |
|
| crngridl.o | |- O = ( oppR ` R ) |
||
| Assertion | crngridl | |- ( R e. CRing -> I = ( LIdeal ` O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crng2idl.i | |- I = ( LIdeal ` R ) |
|
| 2 | crngridl.o | |- O = ( oppR ` R ) |
|
| 3 | eqidd | |- ( R e. CRing -> ( Base ` R ) = ( Base ` R ) ) |
|
| 4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 5 | 2 4 | opprbas | |- ( Base ` R ) = ( Base ` O ) |
| 6 | 5 | a1i | |- ( R e. CRing -> ( Base ` R ) = ( Base ` O ) ) |
| 7 | ssv | |- ( Base ` R ) C_ _V |
|
| 8 | 7 | a1i | |- ( R e. CRing -> ( Base ` R ) C_ _V ) |
| 9 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 10 | 2 9 | oppradd | |- ( +g ` R ) = ( +g ` O ) |
| 11 | 10 | oveqi | |- ( x ( +g ` R ) y ) = ( x ( +g ` O ) y ) |
| 12 | 11 | a1i | |- ( ( R e. CRing /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` O ) y ) ) |
| 13 | ovexd | |- ( ( R e. CRing /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) e. _V ) |
|
| 14 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 15 | eqid | |- ( .r ` O ) = ( .r ` O ) |
|
| 16 | 4 14 2 15 | crngoppr | |- ( ( R e. CRing /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` O ) y ) ) |
| 17 | 16 | 3expb | |- ( ( R e. CRing /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` O ) y ) ) |
| 18 | 3 6 8 12 13 17 | lidlrsppropd | |- ( R e. CRing -> ( ( LIdeal ` R ) = ( LIdeal ` O ) /\ ( RSpan ` R ) = ( RSpan ` O ) ) ) |
| 19 | 18 | simpld | |- ( R e. CRing -> ( LIdeal ` R ) = ( LIdeal ` O ) ) |
| 20 | 1 19 | eqtrid | |- ( R e. CRing -> I = ( LIdeal ` O ) ) |