This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ring operation in a quotient ring by a two-sided ideal. (Contributed by Thierry Arnoux, 1-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusmul2idl.h | ||
| qusmul2idl.v | |||
| qusmul2idl.p | |||
| qusmul2idl.a | |||
| qusmul2idl.1 | |||
| qusmul2idl.2 | |||
| qusmul2idl.3 | |||
| qusmul2idl.4 | |||
| Assertion | qusmul2idl |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusmul2idl.h | ||
| 2 | qusmul2idl.v | ||
| 3 | qusmul2idl.p | ||
| 4 | qusmul2idl.a | ||
| 5 | qusmul2idl.1 | ||
| 6 | qusmul2idl.2 | ||
| 7 | qusmul2idl.3 | ||
| 8 | qusmul2idl.4 | ||
| 9 | 1 | a1i | |
| 10 | 2 | a1i | |
| 11 | 6 | 2idllidld | |
| 12 | eqid | ||
| 13 | 12 | lidlsubg | |
| 14 | 5 11 13 | syl2anc | |
| 15 | eqid | ||
| 16 | 2 15 | eqger | |
| 17 | 14 16 | syl | |
| 18 | eqid | ||
| 19 | 2 15 18 3 | 2idlcpbl | |
| 20 | 5 6 19 | syl2anc | |
| 21 | 2 3 | ringcl | |
| 22 | 21 | 3expb | |
| 23 | 5 22 | sylan | |
| 24 | 23 | caovclg | |
| 25 | 9 10 17 5 20 24 3 4 | qusmulval | |
| 26 | 7 8 25 | mpd3an23 |