This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ring operation in a quotient ring by a two-sided ideal. (Contributed by Thierry Arnoux, 1-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusmul2idl.h | ⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) | |
| qusmul2idl.v | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| qusmul2idl.p | ⊢ · = ( .r ‘ 𝑅 ) | ||
| qusmul2idl.a | ⊢ × = ( .r ‘ 𝑄 ) | ||
| qusmul2idl.1 | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| qusmul2idl.2 | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) | ||
| qusmul2idl.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| qusmul2idl.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | qusmul2idl | ⊢ ( 𝜑 → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusmul2idl.h | ⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) | |
| 2 | qusmul2idl.v | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | qusmul2idl.p | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | qusmul2idl.a | ⊢ × = ( .r ‘ 𝑄 ) | |
| 5 | qusmul2idl.1 | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | qusmul2idl.2 | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) | |
| 7 | qusmul2idl.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | qusmul2idl.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | 1 | a1i | ⊢ ( 𝜑 → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) ) |
| 10 | 2 | a1i | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 11 | 6 | 2idllidld | ⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 12 | eqid | ⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) | |
| 13 | 12 | lidlsubg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 14 | 5 11 13 | syl2anc | ⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 15 | eqid | ⊢ ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 ) | |
| 16 | 2 15 | eqger | ⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝐼 ) Er 𝐵 ) |
| 17 | 14 16 | syl | ⊢ ( 𝜑 → ( 𝑅 ~QG 𝐼 ) Er 𝐵 ) |
| 18 | eqid | ⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) | |
| 19 | 2 15 18 3 | 2idlcpbl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → ( ( 𝑥 ( 𝑅 ~QG 𝐼 ) 𝑦 ∧ 𝑧 ( 𝑅 ~QG 𝐼 ) 𝑡 ) → ( 𝑥 · 𝑧 ) ( 𝑅 ~QG 𝐼 ) ( 𝑦 · 𝑡 ) ) ) |
| 20 | 5 6 19 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ( 𝑅 ~QG 𝐼 ) 𝑦 ∧ 𝑧 ( 𝑅 ~QG 𝐼 ) 𝑡 ) → ( 𝑥 · 𝑧 ) ( 𝑅 ~QG 𝐼 ) ( 𝑦 · 𝑡 ) ) ) |
| 21 | 2 3 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝑝 · 𝑞 ) ∈ 𝐵 ) |
| 22 | 21 | 3expb | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝐵 ) |
| 23 | 5 22 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝐵 ) |
| 24 | 23 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵 ) ) → ( 𝑦 · 𝑡 ) ∈ 𝐵 ) |
| 25 | 9 10 17 5 20 24 3 4 | qusmulval | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) ) |
| 26 | 7 8 25 | mpd3an23 | ⊢ ( 𝜑 → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) ) |