This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of division of rationals. (Contributed by NM, 3-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qdivcl | |- ( ( A e. QQ /\ B e. QQ /\ B =/= 0 ) -> ( A / B ) e. QQ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qcn | |- ( A e. QQ -> A e. CC ) |
|
| 2 | qcn | |- ( B e. QQ -> B e. CC ) |
|
| 3 | id | |- ( B =/= 0 -> B =/= 0 ) |
|
| 4 | divrec | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
|
| 5 | 1 2 3 4 | syl3an | |- ( ( A e. QQ /\ B e. QQ /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 6 | qreccl | |- ( ( B e. QQ /\ B =/= 0 ) -> ( 1 / B ) e. QQ ) |
|
| 7 | qmulcl | |- ( ( A e. QQ /\ ( 1 / B ) e. QQ ) -> ( A x. ( 1 / B ) ) e. QQ ) |
|
| 8 | 6 7 | sylan2 | |- ( ( A e. QQ /\ ( B e. QQ /\ B =/= 0 ) ) -> ( A x. ( 1 / B ) ) e. QQ ) |
| 9 | 8 | 3impb | |- ( ( A e. QQ /\ B e. QQ /\ B =/= 0 ) -> ( A x. ( 1 / B ) ) e. QQ ) |
| 10 | 5 9 | eqeltrd | |- ( ( A e. QQ /\ B e. QQ /\ B =/= 0 ) -> ( A / B ) e. QQ ) |