This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of two ratios. Theorem I.15 of Apostol p. 18. (Contributed by NM, 2-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divdivdiv | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / B ) / ( C / D ) ) = ( ( A x. D ) / ( B x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprrl | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> D e. CC ) |
|
| 2 | simprll | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> C e. CC ) |
|
| 3 | simprlr | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> C =/= 0 ) |
|
| 4 | divcl | |- ( ( D e. CC /\ C e. CC /\ C =/= 0 ) -> ( D / C ) e. CC ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( D / C ) e. CC ) |
| 6 | simpll | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> A e. CC ) |
|
| 7 | simplrl | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> B e. CC ) |
|
| 8 | simplrr | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> B =/= 0 ) |
|
| 9 | divcl | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
|
| 10 | 6 7 8 9 | syl3anc | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( A / B ) e. CC ) |
| 11 | 5 10 | mulcomd | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( D / C ) x. ( A / B ) ) = ( ( A / B ) x. ( D / C ) ) ) |
| 12 | simplr | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( B e. CC /\ B =/= 0 ) ) |
|
| 13 | simprl | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( C e. CC /\ C =/= 0 ) ) |
|
| 14 | divmuldiv | |- ( ( ( A e. CC /\ D e. CC ) /\ ( ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) ) -> ( ( A / B ) x. ( D / C ) ) = ( ( A x. D ) / ( B x. C ) ) ) |
|
| 15 | 6 1 12 13 14 | syl22anc | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / B ) x. ( D / C ) ) = ( ( A x. D ) / ( B x. C ) ) ) |
| 16 | 11 15 | eqtrd | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( D / C ) x. ( A / B ) ) = ( ( A x. D ) / ( B x. C ) ) ) |
| 17 | 16 | oveq2d | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C / D ) x. ( ( D / C ) x. ( A / B ) ) ) = ( ( C / D ) x. ( ( A x. D ) / ( B x. C ) ) ) ) |
| 18 | simprr | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( D e. CC /\ D =/= 0 ) ) |
|
| 19 | divmuldiv | |- ( ( ( C e. CC /\ D e. CC ) /\ ( ( D e. CC /\ D =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) ) -> ( ( C / D ) x. ( D / C ) ) = ( ( C x. D ) / ( D x. C ) ) ) |
|
| 20 | 2 1 18 13 19 | syl22anc | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C / D ) x. ( D / C ) ) = ( ( C x. D ) / ( D x. C ) ) ) |
| 21 | 2 1 | mulcomd | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( C x. D ) = ( D x. C ) ) |
| 22 | 21 | oveq1d | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C x. D ) / ( D x. C ) ) = ( ( D x. C ) / ( D x. C ) ) ) |
| 23 | 1 2 | mulcld | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( D x. C ) e. CC ) |
| 24 | simprrr | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> D =/= 0 ) |
|
| 25 | 1 2 24 3 | mulne0d | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( D x. C ) =/= 0 ) |
| 26 | divid | |- ( ( ( D x. C ) e. CC /\ ( D x. C ) =/= 0 ) -> ( ( D x. C ) / ( D x. C ) ) = 1 ) |
|
| 27 | 23 25 26 | syl2anc | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( D x. C ) / ( D x. C ) ) = 1 ) |
| 28 | 22 27 | eqtrd | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C x. D ) / ( D x. C ) ) = 1 ) |
| 29 | 20 28 | eqtrd | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C / D ) x. ( D / C ) ) = 1 ) |
| 30 | 29 | oveq1d | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( C / D ) x. ( D / C ) ) x. ( A / B ) ) = ( 1 x. ( A / B ) ) ) |
| 31 | divcl | |- ( ( C e. CC /\ D e. CC /\ D =/= 0 ) -> ( C / D ) e. CC ) |
|
| 32 | 2 1 24 31 | syl3anc | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( C / D ) e. CC ) |
| 33 | 32 5 10 | mulassd | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( C / D ) x. ( D / C ) ) x. ( A / B ) ) = ( ( C / D ) x. ( ( D / C ) x. ( A / B ) ) ) ) |
| 34 | 10 | mullidd | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( 1 x. ( A / B ) ) = ( A / B ) ) |
| 35 | 30 33 34 | 3eqtr3d | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C / D ) x. ( ( D / C ) x. ( A / B ) ) ) = ( A / B ) ) |
| 36 | 17 35 | eqtr3d | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C / D ) x. ( ( A x. D ) / ( B x. C ) ) ) = ( A / B ) ) |
| 37 | 6 1 | mulcld | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( A x. D ) e. CC ) |
| 38 | 7 2 | mulcld | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( B x. C ) e. CC ) |
| 39 | mulne0 | |- ( ( ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( B x. C ) =/= 0 ) |
|
| 40 | 39 | ad2ant2lr | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( B x. C ) =/= 0 ) |
| 41 | divcl | |- ( ( ( A x. D ) e. CC /\ ( B x. C ) e. CC /\ ( B x. C ) =/= 0 ) -> ( ( A x. D ) / ( B x. C ) ) e. CC ) |
|
| 42 | 37 38 40 41 | syl3anc | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A x. D ) / ( B x. C ) ) e. CC ) |
| 43 | divne0 | |- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C / D ) =/= 0 ) |
|
| 44 | 43 | adantl | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( C / D ) =/= 0 ) |
| 45 | divmul | |- ( ( ( A / B ) e. CC /\ ( ( A x. D ) / ( B x. C ) ) e. CC /\ ( ( C / D ) e. CC /\ ( C / D ) =/= 0 ) ) -> ( ( ( A / B ) / ( C / D ) ) = ( ( A x. D ) / ( B x. C ) ) <-> ( ( C / D ) x. ( ( A x. D ) / ( B x. C ) ) ) = ( A / B ) ) ) |
|
| 46 | 10 42 32 44 45 | syl112anc | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( A / B ) / ( C / D ) ) = ( ( A x. D ) / ( B x. C ) ) <-> ( ( C / D ) x. ( ( A x. D ) / ( B x. C ) ) ) = ( A / B ) ) ) |
| 47 | 36 46 | mpbird | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / B ) / ( C / D ) ) = ( ( A x. D ) / ( B x. C ) ) ) |