This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product of two sums. (Contributed by NM, 17-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip2dii.1 | |- X = ( BaseSet ` U ) |
|
| ip2dii.2 | |- G = ( +v ` U ) |
||
| ip2dii.7 | |- P = ( .iOLD ` U ) |
||
| ip2dii.u | |- U e. CPreHilOLD |
||
| ip2dii.a | |- A e. X |
||
| ip2dii.b | |- B e. X |
||
| ip2dii.c | |- C e. X |
||
| ip2dii.d | |- D e. X |
||
| Assertion | ip2dii | |- ( ( A G B ) P ( C G D ) ) = ( ( ( A P C ) + ( B P D ) ) + ( ( A P D ) + ( B P C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip2dii.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ip2dii.2 | |- G = ( +v ` U ) |
|
| 3 | ip2dii.7 | |- P = ( .iOLD ` U ) |
|
| 4 | ip2dii.u | |- U e. CPreHilOLD |
|
| 5 | ip2dii.a | |- A e. X |
|
| 6 | ip2dii.b | |- B e. X |
|
| 7 | ip2dii.c | |- C e. X |
|
| 8 | ip2dii.d | |- D e. X |
|
| 9 | 5 7 8 | 3pm3.2i | |- ( A e. X /\ C e. X /\ D e. X ) |
| 10 | 1 2 3 | dipdi | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ C e. X /\ D e. X ) ) -> ( A P ( C G D ) ) = ( ( A P C ) + ( A P D ) ) ) |
| 11 | 4 9 10 | mp2an | |- ( A P ( C G D ) ) = ( ( A P C ) + ( A P D ) ) |
| 12 | 6 7 8 | 3pm3.2i | |- ( B e. X /\ C e. X /\ D e. X ) |
| 13 | 1 2 3 | dipdi | |- ( ( U e. CPreHilOLD /\ ( B e. X /\ C e. X /\ D e. X ) ) -> ( B P ( C G D ) ) = ( ( B P C ) + ( B P D ) ) ) |
| 14 | 4 12 13 | mp2an | |- ( B P ( C G D ) ) = ( ( B P C ) + ( B P D ) ) |
| 15 | 11 14 | oveq12i | |- ( ( A P ( C G D ) ) + ( B P ( C G D ) ) ) = ( ( ( A P C ) + ( A P D ) ) + ( ( B P C ) + ( B P D ) ) ) |
| 16 | 4 | phnvi | |- U e. NrmCVec |
| 17 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ C e. X /\ D e. X ) -> ( C G D ) e. X ) |
| 18 | 16 7 8 17 | mp3an | |- ( C G D ) e. X |
| 19 | 5 6 18 | 3pm3.2i | |- ( A e. X /\ B e. X /\ ( C G D ) e. X ) |
| 20 | 1 2 3 | dipdir | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ ( C G D ) e. X ) ) -> ( ( A G B ) P ( C G D ) ) = ( ( A P ( C G D ) ) + ( B P ( C G D ) ) ) ) |
| 21 | 4 19 20 | mp2an | |- ( ( A G B ) P ( C G D ) ) = ( ( A P ( C G D ) ) + ( B P ( C G D ) ) ) |
| 22 | 1 3 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ C e. X ) -> ( A P C ) e. CC ) |
| 23 | 16 5 7 22 | mp3an | |- ( A P C ) e. CC |
| 24 | 1 3 | dipcl | |- ( ( U e. NrmCVec /\ B e. X /\ D e. X ) -> ( B P D ) e. CC ) |
| 25 | 16 6 8 24 | mp3an | |- ( B P D ) e. CC |
| 26 | 1 3 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ D e. X ) -> ( A P D ) e. CC ) |
| 27 | 16 5 8 26 | mp3an | |- ( A P D ) e. CC |
| 28 | 1 3 | dipcl | |- ( ( U e. NrmCVec /\ B e. X /\ C e. X ) -> ( B P C ) e. CC ) |
| 29 | 16 6 7 28 | mp3an | |- ( B P C ) e. CC |
| 30 | 23 25 27 29 | add42i | |- ( ( ( A P C ) + ( B P D ) ) + ( ( A P D ) + ( B P C ) ) ) = ( ( ( A P C ) + ( A P D ) ) + ( ( B P C ) + ( B P D ) ) ) |
| 31 | 15 21 30 | 3eqtr4i | |- ( ( A G B ) P ( C G D ) ) = ( ( ( A P C ) + ( B P D ) ) + ( ( A P D ) + ( B P C ) ) ) |