This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcl.1 | |- X = ( BaseSet ` U ) |
|
| ipcl.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | diporthcom | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A P B ) = 0 <-> ( B P A ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcl.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ipcl.7 | |- P = ( .iOLD ` U ) |
|
| 3 | fveq2 | |- ( ( A P B ) = 0 -> ( * ` ( A P B ) ) = ( * ` 0 ) ) |
|
| 4 | cj0 | |- ( * ` 0 ) = 0 |
|
| 5 | 3 4 | eqtrdi | |- ( ( A P B ) = 0 -> ( * ` ( A P B ) ) = 0 ) |
| 6 | 1 2 | dipcj | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( * ` ( A P B ) ) = ( B P A ) ) |
| 7 | 6 | eqeq1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( * ` ( A P B ) ) = 0 <-> ( B P A ) = 0 ) ) |
| 8 | 5 7 | imbitrid | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A P B ) = 0 -> ( B P A ) = 0 ) ) |
| 9 | fveq2 | |- ( ( B P A ) = 0 -> ( * ` ( B P A ) ) = ( * ` 0 ) ) |
|
| 10 | 9 4 | eqtrdi | |- ( ( B P A ) = 0 -> ( * ` ( B P A ) ) = 0 ) |
| 11 | 1 2 | dipcj | |- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( * ` ( B P A ) ) = ( A P B ) ) |
| 12 | 11 | 3com23 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( * ` ( B P A ) ) = ( A P B ) ) |
| 13 | 12 | eqeq1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( * ` ( B P A ) ) = 0 <-> ( A P B ) = 0 ) ) |
| 14 | 10 13 | imbitrid | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( B P A ) = 0 -> ( A P B ) = 0 ) ) |
| 15 | 8 14 | impbid | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A P B ) = 0 <-> ( B P A ) = 0 ) ) |