This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed form of preq12b . (Contributed by Scott Fenton, 28-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | preq12bg | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 | |- ( x = A -> { x , y } = { A , y } ) |
|
| 2 | 1 | eqeq1d | |- ( x = A -> ( { x , y } = { z , D } <-> { A , y } = { z , D } ) ) |
| 3 | eqeq1 | |- ( x = A -> ( x = z <-> A = z ) ) |
|
| 4 | 3 | anbi1d | |- ( x = A -> ( ( x = z /\ y = D ) <-> ( A = z /\ y = D ) ) ) |
| 5 | eqeq1 | |- ( x = A -> ( x = D <-> A = D ) ) |
|
| 6 | 5 | anbi1d | |- ( x = A -> ( ( x = D /\ y = z ) <-> ( A = D /\ y = z ) ) ) |
| 7 | 4 6 | orbi12d | |- ( x = A -> ( ( ( x = z /\ y = D ) \/ ( x = D /\ y = z ) ) <-> ( ( A = z /\ y = D ) \/ ( A = D /\ y = z ) ) ) ) |
| 8 | 2 7 | bibi12d | |- ( x = A -> ( ( { x , y } = { z , D } <-> ( ( x = z /\ y = D ) \/ ( x = D /\ y = z ) ) ) <-> ( { A , y } = { z , D } <-> ( ( A = z /\ y = D ) \/ ( A = D /\ y = z ) ) ) ) ) |
| 9 | 8 | imbi2d | |- ( x = A -> ( ( D e. Y -> ( { x , y } = { z , D } <-> ( ( x = z /\ y = D ) \/ ( x = D /\ y = z ) ) ) ) <-> ( D e. Y -> ( { A , y } = { z , D } <-> ( ( A = z /\ y = D ) \/ ( A = D /\ y = z ) ) ) ) ) ) |
| 10 | preq2 | |- ( y = B -> { A , y } = { A , B } ) |
|
| 11 | 10 | eqeq1d | |- ( y = B -> ( { A , y } = { z , D } <-> { A , B } = { z , D } ) ) |
| 12 | eqeq1 | |- ( y = B -> ( y = D <-> B = D ) ) |
|
| 13 | 12 | anbi2d | |- ( y = B -> ( ( A = z /\ y = D ) <-> ( A = z /\ B = D ) ) ) |
| 14 | eqeq1 | |- ( y = B -> ( y = z <-> B = z ) ) |
|
| 15 | 14 | anbi2d | |- ( y = B -> ( ( A = D /\ y = z ) <-> ( A = D /\ B = z ) ) ) |
| 16 | 13 15 | orbi12d | |- ( y = B -> ( ( ( A = z /\ y = D ) \/ ( A = D /\ y = z ) ) <-> ( ( A = z /\ B = D ) \/ ( A = D /\ B = z ) ) ) ) |
| 17 | 11 16 | bibi12d | |- ( y = B -> ( ( { A , y } = { z , D } <-> ( ( A = z /\ y = D ) \/ ( A = D /\ y = z ) ) ) <-> ( { A , B } = { z , D } <-> ( ( A = z /\ B = D ) \/ ( A = D /\ B = z ) ) ) ) ) |
| 18 | 17 | imbi2d | |- ( y = B -> ( ( D e. Y -> ( { A , y } = { z , D } <-> ( ( A = z /\ y = D ) \/ ( A = D /\ y = z ) ) ) ) <-> ( D e. Y -> ( { A , B } = { z , D } <-> ( ( A = z /\ B = D ) \/ ( A = D /\ B = z ) ) ) ) ) ) |
| 19 | preq1 | |- ( z = C -> { z , D } = { C , D } ) |
|
| 20 | 19 | eqeq2d | |- ( z = C -> ( { A , B } = { z , D } <-> { A , B } = { C , D } ) ) |
| 21 | eqeq2 | |- ( z = C -> ( A = z <-> A = C ) ) |
|
| 22 | 21 | anbi1d | |- ( z = C -> ( ( A = z /\ B = D ) <-> ( A = C /\ B = D ) ) ) |
| 23 | eqeq2 | |- ( z = C -> ( B = z <-> B = C ) ) |
|
| 24 | 23 | anbi2d | |- ( z = C -> ( ( A = D /\ B = z ) <-> ( A = D /\ B = C ) ) ) |
| 25 | 22 24 | orbi12d | |- ( z = C -> ( ( ( A = z /\ B = D ) \/ ( A = D /\ B = z ) ) <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
| 26 | 20 25 | bibi12d | |- ( z = C -> ( ( { A , B } = { z , D } <-> ( ( A = z /\ B = D ) \/ ( A = D /\ B = z ) ) ) <-> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) ) |
| 27 | 26 | imbi2d | |- ( z = C -> ( ( D e. Y -> ( { A , B } = { z , D } <-> ( ( A = z /\ B = D ) \/ ( A = D /\ B = z ) ) ) ) <-> ( D e. Y -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) ) ) |
| 28 | preq2 | |- ( w = D -> { z , w } = { z , D } ) |
|
| 29 | 28 | eqeq2d | |- ( w = D -> ( { x , y } = { z , w } <-> { x , y } = { z , D } ) ) |
| 30 | eqeq2 | |- ( w = D -> ( y = w <-> y = D ) ) |
|
| 31 | 30 | anbi2d | |- ( w = D -> ( ( x = z /\ y = w ) <-> ( x = z /\ y = D ) ) ) |
| 32 | eqeq2 | |- ( w = D -> ( x = w <-> x = D ) ) |
|
| 33 | 32 | anbi1d | |- ( w = D -> ( ( x = w /\ y = z ) <-> ( x = D /\ y = z ) ) ) |
| 34 | 31 33 | orbi12d | |- ( w = D -> ( ( ( x = z /\ y = w ) \/ ( x = w /\ y = z ) ) <-> ( ( x = z /\ y = D ) \/ ( x = D /\ y = z ) ) ) ) |
| 35 | vex | |- x e. _V |
|
| 36 | vex | |- y e. _V |
|
| 37 | vex | |- z e. _V |
|
| 38 | vex | |- w e. _V |
|
| 39 | 35 36 37 38 | preq12b | |- ( { x , y } = { z , w } <-> ( ( x = z /\ y = w ) \/ ( x = w /\ y = z ) ) ) |
| 40 | 29 34 39 | vtoclbg | |- ( D e. Y -> ( { x , y } = { z , D } <-> ( ( x = z /\ y = D ) \/ ( x = D /\ y = z ) ) ) ) |
| 41 | 40 | a1i | |- ( ( x e. V /\ y e. W /\ z e. X ) -> ( D e. Y -> ( { x , y } = { z , D } <-> ( ( x = z /\ y = D ) \/ ( x = D /\ y = z ) ) ) ) ) |
| 42 | 9 18 27 41 | vtocl3ga | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( D e. Y -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) ) |
| 43 | 42 | 3expa | |- ( ( ( A e. V /\ B e. W ) /\ C e. X ) -> ( D e. Y -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) ) |
| 44 | 43 | impr | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |