This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsgrp.y | |- Y = ( R ^s I ) |
|
| pwsinvg.b | |- B = ( Base ` Y ) |
||
| pwssub.m | |- M = ( -g ` R ) |
||
| pwssub.n | |- .- = ( -g ` Y ) |
||
| Assertion | pwssub | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> ( F .- G ) = ( F oF M G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsgrp.y | |- Y = ( R ^s I ) |
|
| 2 | pwsinvg.b | |- B = ( Base ` Y ) |
|
| 3 | pwssub.m | |- M = ( -g ` R ) |
|
| 4 | pwssub.n | |- .- = ( -g ` Y ) |
|
| 5 | simplr | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> I e. V ) |
|
| 6 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 7 | simpll | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> R e. Grp ) |
|
| 8 | simprl | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> F e. B ) |
|
| 9 | 1 6 2 7 5 8 | pwselbas | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> F : I --> ( Base ` R ) ) |
| 10 | 9 | ffvelcdmda | |- ( ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) /\ x e. I ) -> ( F ` x ) e. ( Base ` R ) ) |
| 11 | fvexd | |- ( ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) /\ x e. I ) -> ( ( invg ` R ) ` ( G ` x ) ) e. _V ) |
|
| 12 | 9 | feqmptd | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> F = ( x e. I |-> ( F ` x ) ) ) |
| 13 | simprr | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> G e. B ) |
|
| 14 | eqid | |- ( invg ` R ) = ( invg ` R ) |
|
| 15 | eqid | |- ( invg ` Y ) = ( invg ` Y ) |
|
| 16 | 1 2 14 15 | pwsinvg | |- ( ( R e. Grp /\ I e. V /\ G e. B ) -> ( ( invg ` Y ) ` G ) = ( ( invg ` R ) o. G ) ) |
| 17 | 7 5 13 16 | syl3anc | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> ( ( invg ` Y ) ` G ) = ( ( invg ` R ) o. G ) ) |
| 18 | 1 6 2 7 5 13 | pwselbas | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> G : I --> ( Base ` R ) ) |
| 19 | 18 | ffvelcdmda | |- ( ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) /\ x e. I ) -> ( G ` x ) e. ( Base ` R ) ) |
| 20 | 18 | feqmptd | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> G = ( x e. I |-> ( G ` x ) ) ) |
| 21 | 6 14 | grpinvf | |- ( R e. Grp -> ( invg ` R ) : ( Base ` R ) --> ( Base ` R ) ) |
| 22 | 21 | ad2antrr | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> ( invg ` R ) : ( Base ` R ) --> ( Base ` R ) ) |
| 23 | 22 | feqmptd | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> ( invg ` R ) = ( y e. ( Base ` R ) |-> ( ( invg ` R ) ` y ) ) ) |
| 24 | fveq2 | |- ( y = ( G ` x ) -> ( ( invg ` R ) ` y ) = ( ( invg ` R ) ` ( G ` x ) ) ) |
|
| 25 | 19 20 23 24 | fmptco | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> ( ( invg ` R ) o. G ) = ( x e. I |-> ( ( invg ` R ) ` ( G ` x ) ) ) ) |
| 26 | 17 25 | eqtrd | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> ( ( invg ` Y ) ` G ) = ( x e. I |-> ( ( invg ` R ) ` ( G ` x ) ) ) ) |
| 27 | 5 10 11 12 26 | offval2 | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> ( F oF ( +g ` R ) ( ( invg ` Y ) ` G ) ) = ( x e. I |-> ( ( F ` x ) ( +g ` R ) ( ( invg ` R ) ` ( G ` x ) ) ) ) ) |
| 28 | 1 | pwsgrp | |- ( ( R e. Grp /\ I e. V ) -> Y e. Grp ) |
| 29 | 2 15 | grpinvcl | |- ( ( Y e. Grp /\ G e. B ) -> ( ( invg ` Y ) ` G ) e. B ) |
| 30 | 28 13 29 | syl2an2r | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> ( ( invg ` Y ) ` G ) e. B ) |
| 31 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 32 | eqid | |- ( +g ` Y ) = ( +g ` Y ) |
|
| 33 | 1 2 7 5 8 30 31 32 | pwsplusgval | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) = ( F oF ( +g ` R ) ( ( invg ` Y ) ` G ) ) ) |
| 34 | 6 31 14 3 | grpsubval | |- ( ( ( F ` x ) e. ( Base ` R ) /\ ( G ` x ) e. ( Base ` R ) ) -> ( ( F ` x ) M ( G ` x ) ) = ( ( F ` x ) ( +g ` R ) ( ( invg ` R ) ` ( G ` x ) ) ) ) |
| 35 | 10 19 34 | syl2anc | |- ( ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) /\ x e. I ) -> ( ( F ` x ) M ( G ` x ) ) = ( ( F ` x ) ( +g ` R ) ( ( invg ` R ) ` ( G ` x ) ) ) ) |
| 36 | 35 | mpteq2dva | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> ( x e. I |-> ( ( F ` x ) M ( G ` x ) ) ) = ( x e. I |-> ( ( F ` x ) ( +g ` R ) ( ( invg ` R ) ` ( G ` x ) ) ) ) ) |
| 37 | 27 33 36 | 3eqtr4d | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) = ( x e. I |-> ( ( F ` x ) M ( G ` x ) ) ) ) |
| 38 | 2 32 15 4 | grpsubval | |- ( ( F e. B /\ G e. B ) -> ( F .- G ) = ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) |
| 39 | 38 | adantl | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> ( F .- G ) = ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) |
| 40 | 5 10 19 12 20 | offval2 | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> ( F oF M G ) = ( x e. I |-> ( ( F ` x ) M ( G ` x ) ) ) ) |
| 41 | 37 39 40 | 3eqtr4d | |- ( ( ( R e. Grp /\ I e. V ) /\ ( F e. B /\ G e. B ) ) -> ( F .- G ) = ( F oF M G ) ) |