This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsgrp.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsinvg.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwssub.m | ⊢ 𝑀 = ( -g ‘ 𝑅 ) | ||
| pwssub.n | ⊢ − = ( -g ‘ 𝑌 ) | ||
| Assertion | pwssub | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝐹 − 𝐺 ) = ( 𝐹 ∘f 𝑀 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsgrp.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsinvg.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | pwssub.m | ⊢ 𝑀 = ( -g ‘ 𝑅 ) | |
| 4 | pwssub.n | ⊢ − = ( -g ‘ 𝑌 ) | |
| 5 | simplr | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑉 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 7 | simpll | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝑅 ∈ Grp ) | |
| 8 | simprl | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝐹 ∈ 𝐵 ) | |
| 9 | 1 6 2 7 5 8 | pwselbas | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 10 | 9 | ffvelcdmda | ⊢ ( ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 11 | fvexd | ⊢ ( ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ V ) | |
| 12 | 9 | feqmptd | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 13 | simprr | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝐺 ∈ 𝐵 ) | |
| 14 | eqid | ⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) | |
| 15 | eqid | ⊢ ( invg ‘ 𝑌 ) = ( invg ‘ 𝑌 ) | |
| 16 | 1 2 14 15 | pwsinvg | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ) → ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) = ( ( invg ‘ 𝑅 ) ∘ 𝐺 ) ) |
| 17 | 7 5 13 16 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) = ( ( invg ‘ 𝑅 ) ∘ 𝐺 ) ) |
| 18 | 1 6 2 7 5 13 | pwselbas | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝐺 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 19 | 18 | ffvelcdmda | ⊢ ( ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 20 | 18 | feqmptd | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝐺 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 21 | 6 14 | grpinvf | ⊢ ( 𝑅 ∈ Grp → ( invg ‘ 𝑅 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( invg ‘ 𝑅 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 23 | 22 | feqmptd | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( invg ‘ 𝑅 ) = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 24 | fveq2 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑥 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 25 | 19 20 23 24 | fmptco | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( ( invg ‘ 𝑅 ) ∘ 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 26 | 17 25 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 27 | 5 10 11 12 26 | offval2 | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝐹 ∘f ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 28 | 1 | pwsgrp | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ Grp ) |
| 29 | 2 15 | grpinvcl | ⊢ ( ( 𝑌 ∈ Grp ∧ 𝐺 ∈ 𝐵 ) → ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ∈ 𝐵 ) |
| 30 | 28 13 29 | syl2an2r | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ∈ 𝐵 ) |
| 31 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 32 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 33 | 1 2 7 5 8 30 31 32 | pwsplusgval | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) = ( 𝐹 ∘f ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) |
| 34 | 6 31 14 3 | grpsubval | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 35 | 10 19 34 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 36 | 35 | mpteq2dva | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 37 | 27 33 36 | 3eqtr4d | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 38 | 2 32 15 4 | grpsubval | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 − 𝐺 ) = ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) |
| 39 | 38 | adantl | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝐹 − 𝐺 ) = ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) |
| 40 | 5 10 19 12 20 | offval2 | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝐹 ∘f 𝑀 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 41 | 37 39 40 | 3eqtr4d | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝐹 − 𝐺 ) = ( 𝐹 ∘f 𝑀 𝐺 ) ) |