This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsgrp.y | |- Y = ( R ^s I ) |
|
| pwsinvg.b | |- B = ( Base ` Y ) |
||
| pwsinvg.m | |- M = ( invg ` R ) |
||
| pwsinvg.n | |- N = ( invg ` Y ) |
||
| Assertion | pwsinvg | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( N ` X ) = ( M o. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsgrp.y | |- Y = ( R ^s I ) |
|
| 2 | pwsinvg.b | |- B = ( Base ` Y ) |
|
| 3 | pwsinvg.m | |- M = ( invg ` R ) |
|
| 4 | pwsinvg.n | |- N = ( invg ` Y ) |
|
| 5 | eqid | |- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
|
| 6 | simp2 | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> I e. V ) |
|
| 7 | fvexd | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( Scalar ` R ) e. _V ) |
|
| 8 | simp1 | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> R e. Grp ) |
|
| 9 | fconst6g | |- ( R e. Grp -> ( I X. { R } ) : I --> Grp ) |
|
| 10 | 8 9 | syl | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( I X. { R } ) : I --> Grp ) |
| 11 | eqid | |- ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
|
| 12 | eqid | |- ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
|
| 13 | simp3 | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> X e. B ) |
|
| 14 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 15 | 1 14 | pwsval | |- ( ( R e. Grp /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 16 | 15 | 3adant3 | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 17 | 16 | fveq2d | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( Base ` Y ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 18 | 2 17 | eqtrid | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> B = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 19 | 13 18 | eleqtrd | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> X e. ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 20 | 5 6 7 10 11 12 19 | prdsinvgd | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ` X ) = ( x e. I |-> ( ( invg ` ( ( I X. { R } ) ` x ) ) ` ( X ` x ) ) ) ) |
| 21 | fvconst2g | |- ( ( R e. Grp /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
|
| 22 | 8 21 | sylan | |- ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
| 23 | 22 | fveq2d | |- ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( invg ` ( ( I X. { R } ) ` x ) ) = ( invg ` R ) ) |
| 24 | 23 3 | eqtr4di | |- ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( invg ` ( ( I X. { R } ) ` x ) ) = M ) |
| 25 | 24 | fveq1d | |- ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( ( invg ` ( ( I X. { R } ) ` x ) ) ` ( X ` x ) ) = ( M ` ( X ` x ) ) ) |
| 26 | 25 | mpteq2dva | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( x e. I |-> ( ( invg ` ( ( I X. { R } ) ` x ) ) ` ( X ` x ) ) ) = ( x e. I |-> ( M ` ( X ` x ) ) ) ) |
| 27 | 20 26 | eqtrd | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ` X ) = ( x e. I |-> ( M ` ( X ` x ) ) ) ) |
| 28 | 16 | fveq2d | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( invg ` Y ) = ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 29 | 4 28 | eqtrid | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> N = ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 30 | 29 | fveq1d | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( N ` X ) = ( ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ` X ) ) |
| 31 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 32 | 1 31 2 8 6 13 | pwselbas | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> X : I --> ( Base ` R ) ) |
| 33 | 32 | ffvelcdmda | |- ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( X ` x ) e. ( Base ` R ) ) |
| 34 | 32 | feqmptd | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> X = ( x e. I |-> ( X ` x ) ) ) |
| 35 | 31 3 | grpinvf | |- ( R e. Grp -> M : ( Base ` R ) --> ( Base ` R ) ) |
| 36 | 8 35 | syl | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> M : ( Base ` R ) --> ( Base ` R ) ) |
| 37 | 36 | feqmptd | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> M = ( y e. ( Base ` R ) |-> ( M ` y ) ) ) |
| 38 | fveq2 | |- ( y = ( X ` x ) -> ( M ` y ) = ( M ` ( X ` x ) ) ) |
|
| 39 | 33 34 37 38 | fmptco | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( M o. X ) = ( x e. I |-> ( M ` ( X ` x ) ) ) ) |
| 40 | 27 30 39 | 3eqtr4d | |- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( N ` X ) = ( M o. X ) ) |