This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the power class of a union. (Contributed by NM, 26-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eldifpw.1 | |- C e. _V |
|
| Assertion | elpwun | |- ( A e. ~P ( B u. C ) <-> ( A \ C ) e. ~P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifpw.1 | |- C e. _V |
|
| 2 | elex | |- ( A e. ~P ( B u. C ) -> A e. _V ) |
|
| 3 | elex | |- ( ( A \ C ) e. ~P B -> ( A \ C ) e. _V ) |
|
| 4 | difex2 | |- ( C e. _V -> ( A e. _V <-> ( A \ C ) e. _V ) ) |
|
| 5 | 1 4 | ax-mp | |- ( A e. _V <-> ( A \ C ) e. _V ) |
| 6 | 3 5 | sylibr | |- ( ( A \ C ) e. ~P B -> A e. _V ) |
| 7 | elpwg | |- ( A e. _V -> ( A e. ~P ( B u. C ) <-> A C_ ( B u. C ) ) ) |
|
| 8 | uncom | |- ( B u. C ) = ( C u. B ) |
|
| 9 | 8 | sseq2i | |- ( A C_ ( B u. C ) <-> A C_ ( C u. B ) ) |
| 10 | ssundif | |- ( A C_ ( C u. B ) <-> ( A \ C ) C_ B ) |
|
| 11 | 9 10 | bitri | |- ( A C_ ( B u. C ) <-> ( A \ C ) C_ B ) |
| 12 | difexg | |- ( A e. _V -> ( A \ C ) e. _V ) |
|
| 13 | elpwg | |- ( ( A \ C ) e. _V -> ( ( A \ C ) e. ~P B <-> ( A \ C ) C_ B ) ) |
|
| 14 | 12 13 | syl | |- ( A e. _V -> ( ( A \ C ) e. ~P B <-> ( A \ C ) C_ B ) ) |
| 15 | 11 14 | bitr4id | |- ( A e. _V -> ( A C_ ( B u. C ) <-> ( A \ C ) e. ~P B ) ) |
| 16 | 7 15 | bitrd | |- ( A e. _V -> ( A e. ~P ( B u. C ) <-> ( A \ C ) e. ~P B ) ) |
| 17 | 2 6 16 | pm5.21nii | |- ( A e. ~P ( B u. C ) <-> ( A \ C ) e. ~P B ) |