This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007) (Proof shortened by Thierry Arnoux, 20-Dec-2016) Remove use of ax-sep , ax-nul , ax-pr and shorten proof. (Revised by BJ, 14-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwundif | |- ~P ( A u. B ) = ( ( ~P ( A u. B ) \ ~P A ) u. ~P A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 | |- A C_ ( A u. B ) |
|
| 2 | 1 | sspwi | |- ~P A C_ ~P ( A u. B ) |
| 3 | undif | |- ( ~P A C_ ~P ( A u. B ) <-> ( ~P A u. ( ~P ( A u. B ) \ ~P A ) ) = ~P ( A u. B ) ) |
|
| 4 | 2 3 | mpbi | |- ( ~P A u. ( ~P ( A u. B ) \ ~P A ) ) = ~P ( A u. B ) |
| 5 | uncom | |- ( ~P A u. ( ~P ( A u. B ) \ ~P A ) ) = ( ( ~P ( A u. B ) \ ~P A ) u. ~P A ) |
|
| 6 | 4 5 | eqtr3i | |- ~P ( A u. B ) = ( ( ~P ( A u. B ) \ ~P A ) u. ~P A ) |