This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power set of a finite set is finite and vice-versa. Theorem 38 of Suppes p. 104 and its converse, Theorem 40 of Suppes p. 105. (Contributed by NM, 26-Mar-2007) Avoid ax-pow . (Revised by BTernaryTau, 7-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwfi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | ||
| 2 | 1 | eleq1d | |
| 3 | pweq | ||
| 4 | 3 | eleq1d | |
| 5 | pweq | ||
| 6 | 5 | eleq1d | |
| 7 | pweq | ||
| 8 | 7 | eleq1d | |
| 9 | pw0 | ||
| 10 | snfi | ||
| 11 | 9 10 | eqeltri | |
| 12 | eqid | ||
| 13 | 12 | pwfilem | |
| 14 | 13 | a1i | |
| 15 | 2 4 6 8 11 14 | findcard2 | |
| 16 | pwfir | ||
| 17 | 15 16 | impbii |