This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of finite bags is downward-closed. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| Assertion | psrbaglecl | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> G e. D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 2 | simp2 | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> G : I --> NN0 ) |
|
| 3 | simp1 | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> F e. D ) |
|
| 4 | id | |- ( F e. D -> F e. D ) |
|
| 5 | 1 | psrbagf | |- ( F e. D -> F : I --> NN0 ) |
| 6 | 5 | ffnd | |- ( F e. D -> F Fn I ) |
| 7 | 4 6 | fndmexd | |- ( F e. D -> I e. _V ) |
| 8 | 7 | 3ad2ant1 | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> I e. _V ) |
| 9 | 1 | psrbag | |- ( I e. _V -> ( F e. D <-> ( F : I --> NN0 /\ ( `' F " NN ) e. Fin ) ) ) |
| 10 | 8 9 | syl | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( F e. D <-> ( F : I --> NN0 /\ ( `' F " NN ) e. Fin ) ) ) |
| 11 | 3 10 | mpbid | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( F : I --> NN0 /\ ( `' F " NN ) e. Fin ) ) |
| 12 | 11 | simprd | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( `' F " NN ) e. Fin ) |
| 13 | 1 | psrbaglesupp | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( `' G " NN ) C_ ( `' F " NN ) ) |
| 14 | 12 13 | ssfid | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( `' G " NN ) e. Fin ) |
| 15 | 1 | psrbag | |- ( I e. _V -> ( G e. D <-> ( G : I --> NN0 /\ ( `' G " NN ) e. Fin ) ) ) |
| 16 | 8 15 | syl | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( G e. D <-> ( G : I --> NN0 /\ ( `' G " NN ) e. Fin ) ) ) |
| 17 | 2 14 16 | mpbir2and | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> G e. D ) |