This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a relation applied to two functions. Originally part of ofrfval , this version assumes the functions are sets rather than their domains, avoiding ax-rep . (Contributed by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ofrfvalg.1 | |- ( ph -> F Fn A ) |
|
| ofrfvalg.2 | |- ( ph -> G Fn B ) |
||
| ofrfvalg.3 | |- ( ph -> F e. V ) |
||
| ofrfvalg.4 | |- ( ph -> G e. W ) |
||
| ofrfvalg.5 | |- ( A i^i B ) = S |
||
| ofrfvalg.6 | |- ( ( ph /\ x e. A ) -> ( F ` x ) = C ) |
||
| ofrfvalg.7 | |- ( ( ph /\ x e. B ) -> ( G ` x ) = D ) |
||
| Assertion | ofrfvalg | |- ( ph -> ( F oR R G <-> A. x e. S C R D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofrfvalg.1 | |- ( ph -> F Fn A ) |
|
| 2 | ofrfvalg.2 | |- ( ph -> G Fn B ) |
|
| 3 | ofrfvalg.3 | |- ( ph -> F e. V ) |
|
| 4 | ofrfvalg.4 | |- ( ph -> G e. W ) |
|
| 5 | ofrfvalg.5 | |- ( A i^i B ) = S |
|
| 6 | ofrfvalg.6 | |- ( ( ph /\ x e. A ) -> ( F ` x ) = C ) |
|
| 7 | ofrfvalg.7 | |- ( ( ph /\ x e. B ) -> ( G ` x ) = D ) |
|
| 8 | dmeq | |- ( f = F -> dom f = dom F ) |
|
| 9 | dmeq | |- ( g = G -> dom g = dom G ) |
|
| 10 | 8 9 | ineqan12d | |- ( ( f = F /\ g = G ) -> ( dom f i^i dom g ) = ( dom F i^i dom G ) ) |
| 11 | fveq1 | |- ( f = F -> ( f ` x ) = ( F ` x ) ) |
|
| 12 | fveq1 | |- ( g = G -> ( g ` x ) = ( G ` x ) ) |
|
| 13 | 11 12 | breqan12d | |- ( ( f = F /\ g = G ) -> ( ( f ` x ) R ( g ` x ) <-> ( F ` x ) R ( G ` x ) ) ) |
| 14 | 10 13 | raleqbidv | |- ( ( f = F /\ g = G ) -> ( A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) <-> A. x e. ( dom F i^i dom G ) ( F ` x ) R ( G ` x ) ) ) |
| 15 | df-ofr | |- oR R = { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) } |
|
| 16 | 14 15 | brabga | |- ( ( F e. V /\ G e. W ) -> ( F oR R G <-> A. x e. ( dom F i^i dom G ) ( F ` x ) R ( G ` x ) ) ) |
| 17 | 3 4 16 | syl2anc | |- ( ph -> ( F oR R G <-> A. x e. ( dom F i^i dom G ) ( F ` x ) R ( G ` x ) ) ) |
| 18 | 1 | fndmd | |- ( ph -> dom F = A ) |
| 19 | 2 | fndmd | |- ( ph -> dom G = B ) |
| 20 | 18 19 | ineq12d | |- ( ph -> ( dom F i^i dom G ) = ( A i^i B ) ) |
| 21 | 20 5 | eqtrdi | |- ( ph -> ( dom F i^i dom G ) = S ) |
| 22 | 21 | raleqdv | |- ( ph -> ( A. x e. ( dom F i^i dom G ) ( F ` x ) R ( G ` x ) <-> A. x e. S ( F ` x ) R ( G ` x ) ) ) |
| 23 | inss1 | |- ( A i^i B ) C_ A |
|
| 24 | 5 23 | eqsstrri | |- S C_ A |
| 25 | 24 | sseli | |- ( x e. S -> x e. A ) |
| 26 | 25 6 | sylan2 | |- ( ( ph /\ x e. S ) -> ( F ` x ) = C ) |
| 27 | inss2 | |- ( A i^i B ) C_ B |
|
| 28 | 5 27 | eqsstrri | |- S C_ B |
| 29 | 28 | sseli | |- ( x e. S -> x e. B ) |
| 30 | 29 7 | sylan2 | |- ( ( ph /\ x e. S ) -> ( G ` x ) = D ) |
| 31 | 26 30 | breq12d | |- ( ( ph /\ x e. S ) -> ( ( F ` x ) R ( G ` x ) <-> C R D ) ) |
| 32 | 31 | ralbidva | |- ( ph -> ( A. x e. S ( F ` x ) R ( G ` x ) <-> A. x e. S C R D ) ) |
| 33 | 17 22 32 | 3bitrd | |- ( ph -> ( F oR R G <-> A. x e. S C R D ) ) |