This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is zero outside its support. Version of suppssr avoiding ax-rep by assuming F is a set rather than its domain A . (Contributed by SN, 5-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppssrg.f | |- ( ph -> F : A --> B ) |
|
| suppssrg.n | |- ( ph -> ( F supp Z ) C_ W ) |
||
| suppssrg.a | |- ( ph -> F e. V ) |
||
| suppssrg.z | |- ( ph -> Z e. U ) |
||
| Assertion | suppssrg | |- ( ( ph /\ X e. ( A \ W ) ) -> ( F ` X ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssrg.f | |- ( ph -> F : A --> B ) |
|
| 2 | suppssrg.n | |- ( ph -> ( F supp Z ) C_ W ) |
|
| 3 | suppssrg.a | |- ( ph -> F e. V ) |
|
| 4 | suppssrg.z | |- ( ph -> Z e. U ) |
|
| 5 | eldif | |- ( X e. ( A \ W ) <-> ( X e. A /\ -. X e. W ) ) |
|
| 6 | 1 | ffnd | |- ( ph -> F Fn A ) |
| 7 | elsuppfng | |- ( ( F Fn A /\ F e. V /\ Z e. U ) -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
|
| 8 | 6 3 4 7 | syl3anc | |- ( ph -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
| 9 | 2 | sseld | |- ( ph -> ( X e. ( F supp Z ) -> X e. W ) ) |
| 10 | 8 9 | sylbird | |- ( ph -> ( ( X e. A /\ ( F ` X ) =/= Z ) -> X e. W ) ) |
| 11 | 10 | expdimp | |- ( ( ph /\ X e. A ) -> ( ( F ` X ) =/= Z -> X e. W ) ) |
| 12 | 11 | necon1bd | |- ( ( ph /\ X e. A ) -> ( -. X e. W -> ( F ` X ) = Z ) ) |
| 13 | 12 | impr | |- ( ( ph /\ ( X e. A /\ -. X e. W ) ) -> ( F ` X ) = Z ) |
| 14 | 5 13 | sylan2b | |- ( ( ph /\ X e. ( A \ W ) ) -> ( F ` X ) = Z ) |