This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a permutation fixing an element to the set with this element removed is an element of the restricted symmetric group. (Contributed by AV, 4-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
||
| symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
||
| symgfixf.d | |- D = ( N \ { K } ) |
||
| Assertion | symgfixelsi | |- ( ( K e. N /\ F e. Q ) -> ( F |` D ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
|
| 3 | symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 4 | symgfixf.d | |- D = ( N \ { K } ) |
|
| 5 | 1 2 | symgfixelq | |- ( F e. Q -> ( F e. Q <-> ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) ) |
| 6 | f1of1 | |- ( F : N -1-1-onto-> N -> F : N -1-1-> N ) |
|
| 7 | 6 | ad2antrl | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> F : N -1-1-> N ) |
| 8 | difssd | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> ( N \ { K } ) C_ N ) |
|
| 9 | f1ores | |- ( ( F : N -1-1-> N /\ ( N \ { K } ) C_ N ) -> ( F |` ( N \ { K } ) ) : ( N \ { K } ) -1-1-onto-> ( F " ( N \ { K } ) ) ) |
|
| 10 | 7 8 9 | syl2anc | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> ( F |` ( N \ { K } ) ) : ( N \ { K } ) -1-1-onto-> ( F " ( N \ { K } ) ) ) |
| 11 | 4 | reseq2i | |- ( F |` D ) = ( F |` ( N \ { K } ) ) |
| 12 | 11 | a1i | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> ( F |` D ) = ( F |` ( N \ { K } ) ) ) |
| 13 | 4 | a1i | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> D = ( N \ { K } ) ) |
| 14 | f1ofo | |- ( F : N -1-1-onto-> N -> F : N -onto-> N ) |
|
| 15 | foima | |- ( F : N -onto-> N -> ( F " N ) = N ) |
|
| 16 | 15 | eqcomd | |- ( F : N -onto-> N -> N = ( F " N ) ) |
| 17 | 14 16 | syl | |- ( F : N -1-1-onto-> N -> N = ( F " N ) ) |
| 18 | 17 | ad2antrl | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> N = ( F " N ) ) |
| 19 | sneq | |- ( K = ( F ` K ) -> { K } = { ( F ` K ) } ) |
|
| 20 | 19 | eqcoms | |- ( ( F ` K ) = K -> { K } = { ( F ` K ) } ) |
| 21 | 20 | ad2antll | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> { K } = { ( F ` K ) } ) |
| 22 | f1ofn | |- ( F : N -1-1-onto-> N -> F Fn N ) |
|
| 23 | 22 | ad2antrl | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> F Fn N ) |
| 24 | simpl | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> K e. N ) |
|
| 25 | fnsnfv | |- ( ( F Fn N /\ K e. N ) -> { ( F ` K ) } = ( F " { K } ) ) |
|
| 26 | 23 24 25 | syl2anc | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> { ( F ` K ) } = ( F " { K } ) ) |
| 27 | 21 26 | eqtrd | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> { K } = ( F " { K } ) ) |
| 28 | 18 27 | difeq12d | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> ( N \ { K } ) = ( ( F " N ) \ ( F " { K } ) ) ) |
| 29 | dff1o2 | |- ( F : N -1-1-onto-> N <-> ( F Fn N /\ Fun `' F /\ ran F = N ) ) |
|
| 30 | 29 | simp2bi | |- ( F : N -1-1-onto-> N -> Fun `' F ) |
| 31 | 30 | ad2antrl | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> Fun `' F ) |
| 32 | imadif | |- ( Fun `' F -> ( F " ( N \ { K } ) ) = ( ( F " N ) \ ( F " { K } ) ) ) |
|
| 33 | 31 32 | syl | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> ( F " ( N \ { K } ) ) = ( ( F " N ) \ ( F " { K } ) ) ) |
| 34 | 28 13 33 | 3eqtr4d | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> D = ( F " ( N \ { K } ) ) ) |
| 35 | 12 13 34 | f1oeq123d | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> ( ( F |` D ) : D -1-1-onto-> D <-> ( F |` ( N \ { K } ) ) : ( N \ { K } ) -1-1-onto-> ( F " ( N \ { K } ) ) ) ) |
| 36 | 10 35 | mpbird | |- ( ( K e. N /\ ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) -> ( F |` D ) : D -1-1-onto-> D ) |
| 37 | 36 | ancoms | |- ( ( ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) /\ K e. N ) -> ( F |` D ) : D -1-1-onto-> D ) |
| 38 | 1 2 3 4 | symgfixels | |- ( F e. Q -> ( ( F |` D ) e. S <-> ( F |` D ) : D -1-1-onto-> D ) ) |
| 39 | 37 38 | imbitrrid | |- ( F e. Q -> ( ( ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) /\ K e. N ) -> ( F |` D ) e. S ) ) |
| 40 | 39 | expd | |- ( F e. Q -> ( ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) -> ( K e. N -> ( F |` D ) e. S ) ) ) |
| 41 | 5 40 | sylbid | |- ( F e. Q -> ( F e. Q -> ( K e. N -> ( F |` D ) e. S ) ) ) |
| 42 | 41 | pm2.43i | |- ( F e. Q -> ( K e. N -> ( F |` D ) e. S ) ) |
| 43 | 42 | impcom | |- ( ( K e. N /\ F e. Q ) -> ( F |` D ) e. S ) |