This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 13-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfix.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| psgnfix.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
||
| psgnfix.s | |- S = ( SymGrp ` ( N \ { K } ) ) |
||
| Assertion | psgnfix1 | |- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfix.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | psgnfix.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| 3 | psgnfix.s | |- S = ( SymGrp ` ( N \ { K } ) ) |
|
| 4 | eqid | |- { q e. P | ( q ` K ) = K } = { q e. P | ( q ` K ) = K } |
|
| 5 | 3 | fveq2i | |- ( Base ` S ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
| 6 | eqid | |- ( N \ { K } ) = ( N \ { K } ) |
|
| 7 | 1 4 5 6 | symgfixelsi | |- ( ( K e. N /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` S ) ) |
| 8 | 7 | adantll | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` S ) ) |
| 9 | diffi | |- ( N e. Fin -> ( N \ { K } ) e. Fin ) |
|
| 10 | 9 | ad2antrr | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( N \ { K } ) e. Fin ) |
| 11 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 12 | 3 11 2 | psgnfitr | |- ( ( N \ { K } ) e. Fin -> ( ( Q |` ( N \ { K } ) ) e. ( Base ` S ) <-> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) ) |
| 13 | 10 12 | syl | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( Q |` ( N \ { K } ) ) e. ( Base ` S ) <-> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) ) |
| 14 | 8 13 | mpbid | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) |
| 15 | 14 | ex | |- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) ) |