This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 17-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfix.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| psgnfix.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
||
| psgnfix.s | |- S = ( SymGrp ` ( N \ { K } ) ) |
||
| psgnfix.z | |- Z = ( SymGrp ` N ) |
||
| psgnfix.r | |- R = ran ( pmTrsp ` N ) |
||
| Assertion | psgnfix2 | |- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word R Q = ( Z gsum w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfix.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | psgnfix.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| 3 | psgnfix.s | |- S = ( SymGrp ` ( N \ { K } ) ) |
|
| 4 | psgnfix.z | |- Z = ( SymGrp ` N ) |
|
| 5 | psgnfix.r | |- R = ran ( pmTrsp ` N ) |
|
| 6 | elrabi | |- ( Q e. { q e. P | ( q ` K ) = K } -> Q e. P ) |
|
| 7 | 6 | adantl | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> Q e. P ) |
| 8 | 4 | fveq2i | |- ( Base ` Z ) = ( Base ` ( SymGrp ` N ) ) |
| 9 | 1 8 | eqtr4i | |- P = ( Base ` Z ) |
| 10 | 4 9 5 | psgnfitr | |- ( N e. Fin -> ( Q e. P <-> E. w e. Word R Q = ( Z gsum w ) ) ) |
| 11 | 10 | bicomd | |- ( N e. Fin -> ( E. w e. Word R Q = ( Z gsum w ) <-> Q e. P ) ) |
| 12 | 11 | ad2antrr | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( E. w e. Word R Q = ( Z gsum w ) <-> Q e. P ) ) |
| 13 | 7 12 | mpbird | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. w e. Word R Q = ( Z gsum w ) ) |
| 14 | 13 | ex | |- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word R Q = ( Z gsum w ) ) ) |