This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019) (Revised by AV, 5-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | copsgndif.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| copsgndif.s | |- S = ( pmSgn ` N ) |
||
| copsgndif.z | |- Z = ( pmSgn ` ( N \ { K } ) ) |
||
| Assertion | copsgndif | |- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> ( ( Y o. Z ) ` ( Q |` ( N \ { K } ) ) ) = ( ( Y o. S ) ` Q ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | copsgndif.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | copsgndif.s | |- S = ( pmSgn ` N ) |
|
| 3 | copsgndif.z | |- Z = ( pmSgn ` ( N \ { K } ) ) |
|
| 4 | 1 2 3 | psgndif | |- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( S ` Q ) ) ) |
| 5 | 4 | imp | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( S ` Q ) ) |
| 6 | 5 | fveq2d | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Y ` ( Z ` ( Q |` ( N \ { K } ) ) ) ) = ( Y ` ( S ` Q ) ) ) |
| 7 | diffi | |- ( N e. Fin -> ( N \ { K } ) e. Fin ) |
|
| 8 | 7 | ad2antrr | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( N \ { K } ) e. Fin ) |
| 9 | eqid | |- { q e. P | ( q ` K ) = K } = { q e. P | ( q ` K ) = K } |
|
| 10 | eqid | |- ( Base ` ( SymGrp ` ( N \ { K } ) ) ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 11 | eqid | |- ( N \ { K } ) = ( N \ { K } ) |
|
| 12 | 1 9 10 11 | symgfixelsi | |- ( ( K e. N /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) |
| 13 | 12 | adantll | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) |
| 14 | 10 3 | cofipsgn | |- ( ( ( N \ { K } ) e. Fin /\ ( Q |` ( N \ { K } ) ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) -> ( ( Y o. Z ) ` ( Q |` ( N \ { K } ) ) ) = ( Y ` ( Z ` ( Q |` ( N \ { K } ) ) ) ) ) |
| 15 | 8 13 14 | syl2anc | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( Y o. Z ) ` ( Q |` ( N \ { K } ) ) ) = ( Y ` ( Z ` ( Q |` ( N \ { K } ) ) ) ) ) |
| 16 | elrabi | |- ( Q e. { q e. P | ( q ` K ) = K } -> Q e. P ) |
|
| 17 | 1 2 | cofipsgn | |- ( ( N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) ) |
| 18 | 16 17 | sylan2 | |- ( ( N e. Fin /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) ) |
| 19 | 18 | adantlr | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) ) |
| 20 | 6 15 19 | 3eqtr4d | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( Y o. Z ) ` ( Q |` ( N \ { K } ) ) ) = ( ( Y o. S ) ` Q ) ) |
| 21 | 20 | ex | |- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> ( ( Y o. Z ) ` ( Q |` ( N \ { K } ) ) ) = ( ( Y o. S ) ` Q ) ) ) |