This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| prodrb.4 | |- ( ph -> M e. ZZ ) |
||
| prodrb.5 | |- ( ph -> N e. ZZ ) |
||
| prodrb.6 | |- ( ph -> A C_ ( ZZ>= ` M ) ) |
||
| prodrb.7 | |- ( ph -> A C_ ( ZZ>= ` N ) ) |
||
| Assertion | prodrb | |- ( ph -> ( seq M ( x. , F ) ~~> C <-> seq N ( x. , F ) ~~> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| 2 | prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | prodrb.4 | |- ( ph -> M e. ZZ ) |
|
| 4 | prodrb.5 | |- ( ph -> N e. ZZ ) |
|
| 5 | prodrb.6 | |- ( ph -> A C_ ( ZZ>= ` M ) ) |
|
| 6 | prodrb.7 | |- ( ph -> A C_ ( ZZ>= ` N ) ) |
|
| 7 | 1 2 3 4 5 6 | prodrblem2 | |- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( seq M ( x. , F ) ~~> C <-> seq N ( x. , F ) ~~> C ) ) |
| 8 | 1 2 4 3 6 5 | prodrblem2 | |- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> ( seq N ( x. , F ) ~~> C <-> seq M ( x. , F ) ~~> C ) ) |
| 9 | 8 | bicomd | |- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> ( seq M ( x. , F ) ~~> C <-> seq N ( x. , F ) ~~> C ) ) |
| 10 | uztric | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) ) |
|
| 11 | 3 4 10 | syl2anc | |- ( ph -> ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) ) |
| 12 | 7 9 11 | mpjaodan | |- ( ph -> ( seq M ( x. , F ) ~~> C <-> seq N ( x. , F ) ~~> C ) ) |