This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prmlem1 and prmlem2 . (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prmlem0.1 | |- ( ( -. 2 || M /\ x e. ( ZZ>= ` M ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
|
| prmlem0.2 | |- ( K e. Prime -> -. K || N ) |
||
| prmlem0.3 | |- ( K + 2 ) = M |
||
| Assertion | prmlem0 | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmlem0.1 | |- ( ( -. 2 || M /\ x e. ( ZZ>= ` M ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
|
| 2 | prmlem0.2 | |- ( K e. Prime -> -. K || N ) |
|
| 3 | prmlem0.3 | |- ( K + 2 ) = M |
|
| 4 | eldifi | |- ( x e. ( Prime \ { 2 } ) -> x e. Prime ) |
|
| 5 | eleq1 | |- ( x = K -> ( x e. Prime <-> K e. Prime ) ) |
|
| 6 | breq1 | |- ( x = K -> ( x || N <-> K || N ) ) |
|
| 7 | 6 | notbid | |- ( x = K -> ( -. x || N <-> -. K || N ) ) |
| 8 | 5 7 | imbi12d | |- ( x = K -> ( ( x e. Prime -> -. x || N ) <-> ( K e. Prime -> -. K || N ) ) ) |
| 9 | 2 8 | mpbiri | |- ( x = K -> ( x e. Prime -> -. x || N ) ) |
| 10 | 4 9 | syl5 | |- ( x = K -> ( x e. ( Prime \ { 2 } ) -> -. x || N ) ) |
| 11 | 10 | adantrd | |- ( x = K -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
| 12 | 11 | a1i | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x = K -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) |
| 13 | uzp1 | |- ( x e. ( ZZ>= ` ( K + 1 ) ) -> ( x = ( K + 1 ) \/ x e. ( ZZ>= ` ( ( K + 1 ) + 1 ) ) ) ) |
|
| 14 | eleq1 | |- ( x = ( K + 1 ) -> ( x e. ( Prime \ { 2 } ) <-> ( K + 1 ) e. ( Prime \ { 2 } ) ) ) |
|
| 15 | 14 | adantl | |- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ x = ( K + 1 ) ) -> ( x e. ( Prime \ { 2 } ) <-> ( K + 1 ) e. ( Prime \ { 2 } ) ) ) |
| 16 | eldifsn | |- ( ( K + 1 ) e. ( Prime \ { 2 } ) <-> ( ( K + 1 ) e. Prime /\ ( K + 1 ) =/= 2 ) ) |
|
| 17 | eluzel2 | |- ( x e. ( ZZ>= ` K ) -> K e. ZZ ) |
|
| 18 | 17 | adantl | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> K e. ZZ ) |
| 19 | simpl | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> -. 2 || K ) |
|
| 20 | 1z | |- 1 e. ZZ |
|
| 21 | n2dvds1 | |- -. 2 || 1 |
|
| 22 | opoe | |- ( ( ( K e. ZZ /\ -. 2 || K ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( K + 1 ) ) |
|
| 23 | 20 21 22 | mpanr12 | |- ( ( K e. ZZ /\ -. 2 || K ) -> 2 || ( K + 1 ) ) |
| 24 | 18 19 23 | syl2anc | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> 2 || ( K + 1 ) ) |
| 25 | 24 | adantr | |- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> 2 || ( K + 1 ) ) |
| 26 | 2z | |- 2 e. ZZ |
|
| 27 | uzid | |- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
|
| 28 | 26 27 | mp1i | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> 2 e. ( ZZ>= ` 2 ) ) |
| 29 | dvdsprm | |- ( ( 2 e. ( ZZ>= ` 2 ) /\ ( K + 1 ) e. Prime ) -> ( 2 || ( K + 1 ) <-> 2 = ( K + 1 ) ) ) |
|
| 30 | 28 29 | sylan | |- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> ( 2 || ( K + 1 ) <-> 2 = ( K + 1 ) ) ) |
| 31 | 25 30 | mpbid | |- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> 2 = ( K + 1 ) ) |
| 32 | 31 | eqcomd | |- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> ( K + 1 ) = 2 ) |
| 33 | 32 | a1d | |- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> ( x || N -> ( K + 1 ) = 2 ) ) |
| 34 | 33 | necon3ad | |- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> ( ( K + 1 ) =/= 2 -> -. x || N ) ) |
| 35 | 34 | expimpd | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( ( K + 1 ) e. Prime /\ ( K + 1 ) =/= 2 ) -> -. x || N ) ) |
| 36 | 16 35 | biimtrid | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( K + 1 ) e. ( Prime \ { 2 } ) -> -. x || N ) ) |
| 37 | 36 | adantr | |- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ x = ( K + 1 ) ) -> ( ( K + 1 ) e. ( Prime \ { 2 } ) -> -. x || N ) ) |
| 38 | 15 37 | sylbid | |- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ x = ( K + 1 ) ) -> ( x e. ( Prime \ { 2 } ) -> -. x || N ) ) |
| 39 | 38 | adantrd | |- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ x = ( K + 1 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
| 40 | 39 | ex | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x = ( K + 1 ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) |
| 41 | 18 | zcnd | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> K e. CC ) |
| 42 | ax-1cn | |- 1 e. CC |
|
| 43 | addass | |- ( ( K e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( K + 1 ) + 1 ) = ( K + ( 1 + 1 ) ) ) |
|
| 44 | 42 42 43 | mp3an23 | |- ( K e. CC -> ( ( K + 1 ) + 1 ) = ( K + ( 1 + 1 ) ) ) |
| 45 | 41 44 | syl | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( K + 1 ) + 1 ) = ( K + ( 1 + 1 ) ) ) |
| 46 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 47 | 46 | oveq2i | |- ( K + ( 1 + 1 ) ) = ( K + 2 ) |
| 48 | 47 3 | eqtri | |- ( K + ( 1 + 1 ) ) = M |
| 49 | 45 48 | eqtrdi | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( K + 1 ) + 1 ) = M ) |
| 50 | 49 | fveq2d | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ZZ>= ` ( ( K + 1 ) + 1 ) ) = ( ZZ>= ` M ) ) |
| 51 | 50 | eleq2d | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x e. ( ZZ>= ` ( ( K + 1 ) + 1 ) ) <-> x e. ( ZZ>= ` M ) ) ) |
| 52 | dvdsaddr | |- ( ( 2 e. ZZ /\ K e. ZZ ) -> ( 2 || K <-> 2 || ( K + 2 ) ) ) |
|
| 53 | 26 18 52 | sylancr | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( 2 || K <-> 2 || ( K + 2 ) ) ) |
| 54 | 3 | breq2i | |- ( 2 || ( K + 2 ) <-> 2 || M ) |
| 55 | 53 54 | bitrdi | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( 2 || K <-> 2 || M ) ) |
| 56 | 19 55 | mtbid | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> -. 2 || M ) |
| 57 | 1 | ex | |- ( -. 2 || M -> ( x e. ( ZZ>= ` M ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) |
| 58 | 56 57 | syl | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x e. ( ZZ>= ` M ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) |
| 59 | 51 58 | sylbid | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x e. ( ZZ>= ` ( ( K + 1 ) + 1 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) |
| 60 | 40 59 | jaod | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( x = ( K + 1 ) \/ x e. ( ZZ>= ` ( ( K + 1 ) + 1 ) ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) |
| 61 | 13 60 | syl5 | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x e. ( ZZ>= ` ( K + 1 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) |
| 62 | uzp1 | |- ( x e. ( ZZ>= ` K ) -> ( x = K \/ x e. ( ZZ>= ` ( K + 1 ) ) ) ) |
|
| 63 | 62 | adantl | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x = K \/ x e. ( ZZ>= ` ( K + 1 ) ) ) ) |
| 64 | 12 61 63 | mpjaod | |- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |