This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prmlem1.n | |- N e. NN |
|
| prmlem1.gt | |- 1 < N |
||
| prmlem1.2 | |- -. 2 || N |
||
| prmlem1.3 | |- -. 3 || N |
||
| prmlem1a.x | |- ( ( -. 2 || 5 /\ x e. ( ZZ>= ` 5 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
||
| Assertion | prmlem1a | |- N e. Prime |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmlem1.n | |- N e. NN |
|
| 2 | prmlem1.gt | |- 1 < N |
|
| 3 | prmlem1.2 | |- -. 2 || N |
|
| 4 | prmlem1.3 | |- -. 3 || N |
|
| 5 | prmlem1a.x | |- ( ( -. 2 || 5 /\ x e. ( ZZ>= ` 5 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
|
| 6 | eluz2b2 | |- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) |
|
| 7 | 1 2 6 | mpbir2an | |- N e. ( ZZ>= ` 2 ) |
| 8 | breq1 | |- ( x = 2 -> ( x || N <-> 2 || N ) ) |
|
| 9 | 8 | notbid | |- ( x = 2 -> ( -. x || N <-> -. 2 || N ) ) |
| 10 | 9 | imbi2d | |- ( x = 2 -> ( ( ( x ^ 2 ) <_ N -> -. x || N ) <-> ( ( x ^ 2 ) <_ N -> -. 2 || N ) ) ) |
| 11 | prmnn | |- ( x e. Prime -> x e. NN ) |
|
| 12 | 11 | adantr | |- ( ( x e. Prime /\ x =/= 2 ) -> x e. NN ) |
| 13 | eldifsn | |- ( x e. ( Prime \ { 2 } ) <-> ( x e. Prime /\ x =/= 2 ) ) |
|
| 14 | n2dvds1 | |- -. 2 || 1 |
|
| 15 | 4 | a1i | |- ( 3 e. Prime -> -. 3 || N ) |
| 16 | 3p2e5 | |- ( 3 + 2 ) = 5 |
|
| 17 | 5 15 16 | prmlem0 | |- ( ( -. 2 || 3 /\ x e. ( ZZ>= ` 3 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
| 18 | 1nprm | |- -. 1 e. Prime |
|
| 19 | 18 | pm2.21i | |- ( 1 e. Prime -> -. 1 || N ) |
| 20 | 1p2e3 | |- ( 1 + 2 ) = 3 |
|
| 21 | 17 19 20 | prmlem0 | |- ( ( -. 2 || 1 /\ x e. ( ZZ>= ` 1 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
| 22 | 14 21 | mpan | |- ( x e. ( ZZ>= ` 1 ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
| 23 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 24 | 22 23 | eleq2s | |- ( x e. NN -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
| 25 | 24 | expd | |- ( x e. NN -> ( x e. ( Prime \ { 2 } ) -> ( ( x ^ 2 ) <_ N -> -. x || N ) ) ) |
| 26 | 13 25 | biimtrrid | |- ( x e. NN -> ( ( x e. Prime /\ x =/= 2 ) -> ( ( x ^ 2 ) <_ N -> -. x || N ) ) ) |
| 27 | 12 26 | mpcom | |- ( ( x e. Prime /\ x =/= 2 ) -> ( ( x ^ 2 ) <_ N -> -. x || N ) ) |
| 28 | 3 | 2a1i | |- ( x e. Prime -> ( ( x ^ 2 ) <_ N -> -. 2 || N ) ) |
| 29 | 10 27 28 | pm2.61ne | |- ( x e. Prime -> ( ( x ^ 2 ) <_ N -> -. x || N ) ) |
| 30 | 29 | rgen | |- A. x e. Prime ( ( x ^ 2 ) <_ N -> -. x || N ) |
| 31 | isprm5 | |- ( N e. Prime <-> ( N e. ( ZZ>= ` 2 ) /\ A. x e. Prime ( ( x ^ 2 ) <_ N -> -. x || N ) ) ) |
|
| 32 | 7 30 31 | mpbir2an | |- N e. Prime |