This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prmlem1.n | |- N e. NN |
|
| prmlem1.gt | |- 1 < N |
||
| prmlem1.2 | |- -. 2 || N |
||
| prmlem1.3 | |- -. 3 || N |
||
| prmlem1.lt | |- N < ; 2 5 |
||
| Assertion | prmlem1 | |- N e. Prime |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmlem1.n | |- N e. NN |
|
| 2 | prmlem1.gt | |- 1 < N |
|
| 3 | prmlem1.2 | |- -. 2 || N |
|
| 4 | prmlem1.3 | |- -. 3 || N |
|
| 5 | prmlem1.lt | |- N < ; 2 5 |
|
| 6 | eluzelre | |- ( x e. ( ZZ>= ` 5 ) -> x e. RR ) |
|
| 7 | 6 | resqcld | |- ( x e. ( ZZ>= ` 5 ) -> ( x ^ 2 ) e. RR ) |
| 8 | eluzle | |- ( x e. ( ZZ>= ` 5 ) -> 5 <_ x ) |
|
| 9 | 5re | |- 5 e. RR |
|
| 10 | 5nn0 | |- 5 e. NN0 |
|
| 11 | 10 | nn0ge0i | |- 0 <_ 5 |
| 12 | le2sq2 | |- ( ( ( 5 e. RR /\ 0 <_ 5 ) /\ ( x e. RR /\ 5 <_ x ) ) -> ( 5 ^ 2 ) <_ ( x ^ 2 ) ) |
|
| 13 | 9 11 12 | mpanl12 | |- ( ( x e. RR /\ 5 <_ x ) -> ( 5 ^ 2 ) <_ ( x ^ 2 ) ) |
| 14 | 6 8 13 | syl2anc | |- ( x e. ( ZZ>= ` 5 ) -> ( 5 ^ 2 ) <_ ( x ^ 2 ) ) |
| 15 | 1 | nnrei | |- N e. RR |
| 16 | 9 | resqcli | |- ( 5 ^ 2 ) e. RR |
| 17 | 5cn | |- 5 e. CC |
|
| 18 | 17 | sqvali | |- ( 5 ^ 2 ) = ( 5 x. 5 ) |
| 19 | 5t5e25 | |- ( 5 x. 5 ) = ; 2 5 |
|
| 20 | 18 19 | eqtri | |- ( 5 ^ 2 ) = ; 2 5 |
| 21 | 5 20 | breqtrri | |- N < ( 5 ^ 2 ) |
| 22 | ltletr | |- ( ( N e. RR /\ ( 5 ^ 2 ) e. RR /\ ( x ^ 2 ) e. RR ) -> ( ( N < ( 5 ^ 2 ) /\ ( 5 ^ 2 ) <_ ( x ^ 2 ) ) -> N < ( x ^ 2 ) ) ) |
|
| 23 | 21 22 | mpani | |- ( ( N e. RR /\ ( 5 ^ 2 ) e. RR /\ ( x ^ 2 ) e. RR ) -> ( ( 5 ^ 2 ) <_ ( x ^ 2 ) -> N < ( x ^ 2 ) ) ) |
| 24 | 15 16 23 | mp3an12 | |- ( ( x ^ 2 ) e. RR -> ( ( 5 ^ 2 ) <_ ( x ^ 2 ) -> N < ( x ^ 2 ) ) ) |
| 25 | 7 14 24 | sylc | |- ( x e. ( ZZ>= ` 5 ) -> N < ( x ^ 2 ) ) |
| 26 | ltnle | |- ( ( N e. RR /\ ( x ^ 2 ) e. RR ) -> ( N < ( x ^ 2 ) <-> -. ( x ^ 2 ) <_ N ) ) |
|
| 27 | 15 7 26 | sylancr | |- ( x e. ( ZZ>= ` 5 ) -> ( N < ( x ^ 2 ) <-> -. ( x ^ 2 ) <_ N ) ) |
| 28 | 25 27 | mpbid | |- ( x e. ( ZZ>= ` 5 ) -> -. ( x ^ 2 ) <_ N ) |
| 29 | 28 | pm2.21d | |- ( x e. ( ZZ>= ` 5 ) -> ( ( x ^ 2 ) <_ N -> -. x || N ) ) |
| 30 | 29 | adantld | |- ( x e. ( ZZ>= ` 5 ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
| 31 | 30 | adantl | |- ( ( -. 2 || 5 /\ x e. ( ZZ>= ` 5 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
| 32 | 1 2 3 4 31 | prmlem1a | |- N e. Prime |