This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prmlem1 and prmlem2 . (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prmlem0.1 | ⊢ ( ( ¬ 2 ∥ 𝑀 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) | |
| prmlem0.2 | ⊢ ( 𝐾 ∈ ℙ → ¬ 𝐾 ∥ 𝑁 ) | ||
| prmlem0.3 | ⊢ ( 𝐾 + 2 ) = 𝑀 | ||
| Assertion | prmlem0 | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmlem0.1 | ⊢ ( ( ¬ 2 ∥ 𝑀 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) | |
| 2 | prmlem0.2 | ⊢ ( 𝐾 ∈ ℙ → ¬ 𝐾 ∥ 𝑁 ) | |
| 3 | prmlem0.3 | ⊢ ( 𝐾 + 2 ) = 𝑀 | |
| 4 | eldifi | ⊢ ( 𝑥 ∈ ( ℙ ∖ { 2 } ) → 𝑥 ∈ ℙ ) | |
| 5 | eleq1 | ⊢ ( 𝑥 = 𝐾 → ( 𝑥 ∈ ℙ ↔ 𝐾 ∈ ℙ ) ) | |
| 6 | breq1 | ⊢ ( 𝑥 = 𝐾 → ( 𝑥 ∥ 𝑁 ↔ 𝐾 ∥ 𝑁 ) ) | |
| 7 | 6 | notbid | ⊢ ( 𝑥 = 𝐾 → ( ¬ 𝑥 ∥ 𝑁 ↔ ¬ 𝐾 ∥ 𝑁 ) ) |
| 8 | 5 7 | imbi12d | ⊢ ( 𝑥 = 𝐾 → ( ( 𝑥 ∈ ℙ → ¬ 𝑥 ∥ 𝑁 ) ↔ ( 𝐾 ∈ ℙ → ¬ 𝐾 ∥ 𝑁 ) ) ) |
| 9 | 2 8 | mpbiri | ⊢ ( 𝑥 = 𝐾 → ( 𝑥 ∈ ℙ → ¬ 𝑥 ∥ 𝑁 ) ) |
| 10 | 4 9 | syl5 | ⊢ ( 𝑥 = 𝐾 → ( 𝑥 ∈ ( ℙ ∖ { 2 } ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 11 | 10 | adantrd | ⊢ ( 𝑥 = 𝐾 → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 12 | 11 | a1i | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑥 = 𝐾 → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) ) |
| 13 | uzp1 | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) → ( 𝑥 = ( 𝐾 + 1 ) ∨ 𝑥 ∈ ( ℤ≥ ‘ ( ( 𝐾 + 1 ) + 1 ) ) ) ) | |
| 14 | eleq1 | ⊢ ( 𝑥 = ( 𝐾 + 1 ) → ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝐾 + 1 ) ∈ ( ℙ ∖ { 2 } ) ) ) | |
| 15 | 14 | adantl | ⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑥 = ( 𝐾 + 1 ) ) → ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝐾 + 1 ) ∈ ( ℙ ∖ { 2 } ) ) ) |
| 16 | eldifsn | ⊢ ( ( 𝐾 + 1 ) ∈ ( ℙ ∖ { 2 } ) ↔ ( ( 𝐾 + 1 ) ∈ ℙ ∧ ( 𝐾 + 1 ) ≠ 2 ) ) | |
| 17 | eluzel2 | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝐾 ∈ ℤ ) | |
| 18 | 17 | adantl | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ∈ ℤ ) |
| 19 | simpl | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ¬ 2 ∥ 𝐾 ) | |
| 20 | 1z | ⊢ 1 ∈ ℤ | |
| 21 | n2dvds1 | ⊢ ¬ 2 ∥ 1 | |
| 22 | opoe | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) ∧ ( 1 ∈ ℤ ∧ ¬ 2 ∥ 1 ) ) → 2 ∥ ( 𝐾 + 1 ) ) | |
| 23 | 20 21 22 | mpanr12 | ⊢ ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) → 2 ∥ ( 𝐾 + 1 ) ) |
| 24 | 18 19 23 | syl2anc | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 2 ∥ ( 𝐾 + 1 ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝐾 + 1 ) ∈ ℙ ) → 2 ∥ ( 𝐾 + 1 ) ) |
| 26 | 2z | ⊢ 2 ∈ ℤ | |
| 27 | uzid | ⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 28 | 26 27 | mp1i | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
| 29 | dvdsprm | ⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐾 + 1 ) ∈ ℙ ) → ( 2 ∥ ( 𝐾 + 1 ) ↔ 2 = ( 𝐾 + 1 ) ) ) | |
| 30 | 28 29 | sylan | ⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝐾 + 1 ) ∈ ℙ ) → ( 2 ∥ ( 𝐾 + 1 ) ↔ 2 = ( 𝐾 + 1 ) ) ) |
| 31 | 25 30 | mpbid | ⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝐾 + 1 ) ∈ ℙ ) → 2 = ( 𝐾 + 1 ) ) |
| 32 | 31 | eqcomd | ⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝐾 + 1 ) ∈ ℙ ) → ( 𝐾 + 1 ) = 2 ) |
| 33 | 32 | a1d | ⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝐾 + 1 ) ∈ ℙ ) → ( 𝑥 ∥ 𝑁 → ( 𝐾 + 1 ) = 2 ) ) |
| 34 | 33 | necon3ad | ⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝐾 + 1 ) ∈ ℙ ) → ( ( 𝐾 + 1 ) ≠ 2 → ¬ 𝑥 ∥ 𝑁 ) ) |
| 35 | 34 | expimpd | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( ( 𝐾 + 1 ) ∈ ℙ ∧ ( 𝐾 + 1 ) ≠ 2 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 36 | 16 35 | biimtrid | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝐾 + 1 ) ∈ ( ℙ ∖ { 2 } ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑥 = ( 𝐾 + 1 ) ) → ( ( 𝐾 + 1 ) ∈ ( ℙ ∖ { 2 } ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 38 | 15 37 | sylbid | ⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑥 = ( 𝐾 + 1 ) ) → ( 𝑥 ∈ ( ℙ ∖ { 2 } ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 39 | 38 | adantrd | ⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑥 = ( 𝐾 + 1 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 40 | 39 | ex | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑥 = ( 𝐾 + 1 ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) ) |
| 41 | 18 | zcnd | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ∈ ℂ ) |
| 42 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 43 | addass | ⊢ ( ( 𝐾 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐾 + 1 ) + 1 ) = ( 𝐾 + ( 1 + 1 ) ) ) | |
| 44 | 42 42 43 | mp3an23 | ⊢ ( 𝐾 ∈ ℂ → ( ( 𝐾 + 1 ) + 1 ) = ( 𝐾 + ( 1 + 1 ) ) ) |
| 45 | 41 44 | syl | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝐾 + 1 ) + 1 ) = ( 𝐾 + ( 1 + 1 ) ) ) |
| 46 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 47 | 46 | oveq2i | ⊢ ( 𝐾 + ( 1 + 1 ) ) = ( 𝐾 + 2 ) |
| 48 | 47 3 | eqtri | ⊢ ( 𝐾 + ( 1 + 1 ) ) = 𝑀 |
| 49 | 45 48 | eqtrdi | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝐾 + 1 ) + 1 ) = 𝑀 ) |
| 50 | 49 | fveq2d | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ℤ≥ ‘ ( ( 𝐾 + 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
| 51 | 50 | eleq2d | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑥 ∈ ( ℤ≥ ‘ ( ( 𝐾 + 1 ) + 1 ) ) ↔ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 52 | dvdsaddr | ⊢ ( ( 2 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 2 ∥ 𝐾 ↔ 2 ∥ ( 𝐾 + 2 ) ) ) | |
| 53 | 26 18 52 | sylancr | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 2 ∥ 𝐾 ↔ 2 ∥ ( 𝐾 + 2 ) ) ) |
| 54 | 3 | breq2i | ⊢ ( 2 ∥ ( 𝐾 + 2 ) ↔ 2 ∥ 𝑀 ) |
| 55 | 53 54 | bitrdi | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 2 ∥ 𝐾 ↔ 2 ∥ 𝑀 ) ) |
| 56 | 19 55 | mtbid | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ¬ 2 ∥ 𝑀 ) |
| 57 | 1 | ex | ⊢ ( ¬ 2 ∥ 𝑀 → ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) ) |
| 58 | 56 57 | syl | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) ) |
| 59 | 51 58 | sylbid | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑥 ∈ ( ℤ≥ ‘ ( ( 𝐾 + 1 ) + 1 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) ) |
| 60 | 40 59 | jaod | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑥 = ( 𝐾 + 1 ) ∨ 𝑥 ∈ ( ℤ≥ ‘ ( ( 𝐾 + 1 ) + 1 ) ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) ) |
| 61 | 13 60 | syl5 | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) ) |
| 62 | uzp1 | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑥 = 𝐾 ∨ 𝑥 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) ) | |
| 63 | 62 | adantl | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑥 = 𝐾 ∨ 𝑥 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) ) |
| 64 | 12 61 63 | mpjaod | ⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |