This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The factorial of a number only contains primes less than the base. (Contributed by Mario Carneiro, 6-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmfac1 | |- ( ( N e. NN0 /\ P e. Prime /\ P || ( ! ` N ) ) -> P <_ N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = 0 -> ( ! ` x ) = ( ! ` 0 ) ) |
|
| 2 | 1 | breq2d | |- ( x = 0 -> ( P || ( ! ` x ) <-> P || ( ! ` 0 ) ) ) |
| 3 | breq2 | |- ( x = 0 -> ( P <_ x <-> P <_ 0 ) ) |
|
| 4 | 2 3 | imbi12d | |- ( x = 0 -> ( ( P || ( ! ` x ) -> P <_ x ) <-> ( P || ( ! ` 0 ) -> P <_ 0 ) ) ) |
| 5 | 4 | imbi2d | |- ( x = 0 -> ( ( P e. Prime -> ( P || ( ! ` x ) -> P <_ x ) ) <-> ( P e. Prime -> ( P || ( ! ` 0 ) -> P <_ 0 ) ) ) ) |
| 6 | fveq2 | |- ( x = k -> ( ! ` x ) = ( ! ` k ) ) |
|
| 7 | 6 | breq2d | |- ( x = k -> ( P || ( ! ` x ) <-> P || ( ! ` k ) ) ) |
| 8 | breq2 | |- ( x = k -> ( P <_ x <-> P <_ k ) ) |
|
| 9 | 7 8 | imbi12d | |- ( x = k -> ( ( P || ( ! ` x ) -> P <_ x ) <-> ( P || ( ! ` k ) -> P <_ k ) ) ) |
| 10 | 9 | imbi2d | |- ( x = k -> ( ( P e. Prime -> ( P || ( ! ` x ) -> P <_ x ) ) <-> ( P e. Prime -> ( P || ( ! ` k ) -> P <_ k ) ) ) ) |
| 11 | fveq2 | |- ( x = ( k + 1 ) -> ( ! ` x ) = ( ! ` ( k + 1 ) ) ) |
|
| 12 | 11 | breq2d | |- ( x = ( k + 1 ) -> ( P || ( ! ` x ) <-> P || ( ! ` ( k + 1 ) ) ) ) |
| 13 | breq2 | |- ( x = ( k + 1 ) -> ( P <_ x <-> P <_ ( k + 1 ) ) ) |
|
| 14 | 12 13 | imbi12d | |- ( x = ( k + 1 ) -> ( ( P || ( ! ` x ) -> P <_ x ) <-> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) |
| 15 | 14 | imbi2d | |- ( x = ( k + 1 ) -> ( ( P e. Prime -> ( P || ( ! ` x ) -> P <_ x ) ) <-> ( P e. Prime -> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) ) |
| 16 | fveq2 | |- ( x = N -> ( ! ` x ) = ( ! ` N ) ) |
|
| 17 | 16 | breq2d | |- ( x = N -> ( P || ( ! ` x ) <-> P || ( ! ` N ) ) ) |
| 18 | breq2 | |- ( x = N -> ( P <_ x <-> P <_ N ) ) |
|
| 19 | 17 18 | imbi12d | |- ( x = N -> ( ( P || ( ! ` x ) -> P <_ x ) <-> ( P || ( ! ` N ) -> P <_ N ) ) ) |
| 20 | 19 | imbi2d | |- ( x = N -> ( ( P e. Prime -> ( P || ( ! ` x ) -> P <_ x ) ) <-> ( P e. Prime -> ( P || ( ! ` N ) -> P <_ N ) ) ) ) |
| 21 | fac0 | |- ( ! ` 0 ) = 1 |
|
| 22 | 21 | breq2i | |- ( P || ( ! ` 0 ) <-> P || 1 ) |
| 23 | nprmdvds1 | |- ( P e. Prime -> -. P || 1 ) |
|
| 24 | 23 | pm2.21d | |- ( P e. Prime -> ( P || 1 -> P <_ 0 ) ) |
| 25 | 22 24 | biimtrid | |- ( P e. Prime -> ( P || ( ! ` 0 ) -> P <_ 0 ) ) |
| 26 | facp1 | |- ( k e. NN0 -> ( ! ` ( k + 1 ) ) = ( ( ! ` k ) x. ( k + 1 ) ) ) |
|
| 27 | 26 | adantr | |- ( ( k e. NN0 /\ P e. Prime ) -> ( ! ` ( k + 1 ) ) = ( ( ! ` k ) x. ( k + 1 ) ) ) |
| 28 | 27 | breq2d | |- ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ! ` ( k + 1 ) ) <-> P || ( ( ! ` k ) x. ( k + 1 ) ) ) ) |
| 29 | simpr | |- ( ( k e. NN0 /\ P e. Prime ) -> P e. Prime ) |
|
| 30 | faccl | |- ( k e. NN0 -> ( ! ` k ) e. NN ) |
|
| 31 | 30 | adantr | |- ( ( k e. NN0 /\ P e. Prime ) -> ( ! ` k ) e. NN ) |
| 32 | 31 | nnzd | |- ( ( k e. NN0 /\ P e. Prime ) -> ( ! ` k ) e. ZZ ) |
| 33 | nn0p1nn | |- ( k e. NN0 -> ( k + 1 ) e. NN ) |
|
| 34 | 33 | adantr | |- ( ( k e. NN0 /\ P e. Prime ) -> ( k + 1 ) e. NN ) |
| 35 | 34 | nnzd | |- ( ( k e. NN0 /\ P e. Prime ) -> ( k + 1 ) e. ZZ ) |
| 36 | euclemma | |- ( ( P e. Prime /\ ( ! ` k ) e. ZZ /\ ( k + 1 ) e. ZZ ) -> ( P || ( ( ! ` k ) x. ( k + 1 ) ) <-> ( P || ( ! ` k ) \/ P || ( k + 1 ) ) ) ) |
|
| 37 | 29 32 35 36 | syl3anc | |- ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ( ! ` k ) x. ( k + 1 ) ) <-> ( P || ( ! ` k ) \/ P || ( k + 1 ) ) ) ) |
| 38 | 28 37 | bitrd | |- ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ! ` ( k + 1 ) ) <-> ( P || ( ! ` k ) \/ P || ( k + 1 ) ) ) ) |
| 39 | nn0re | |- ( k e. NN0 -> k e. RR ) |
|
| 40 | 39 | adantr | |- ( ( k e. NN0 /\ P e. Prime ) -> k e. RR ) |
| 41 | 40 | lep1d | |- ( ( k e. NN0 /\ P e. Prime ) -> k <_ ( k + 1 ) ) |
| 42 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 43 | 42 | adantl | |- ( ( k e. NN0 /\ P e. Prime ) -> P e. ZZ ) |
| 44 | 43 | zred | |- ( ( k e. NN0 /\ P e. Prime ) -> P e. RR ) |
| 45 | 34 | nnred | |- ( ( k e. NN0 /\ P e. Prime ) -> ( k + 1 ) e. RR ) |
| 46 | letr | |- ( ( P e. RR /\ k e. RR /\ ( k + 1 ) e. RR ) -> ( ( P <_ k /\ k <_ ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) |
|
| 47 | 44 40 45 46 | syl3anc | |- ( ( k e. NN0 /\ P e. Prime ) -> ( ( P <_ k /\ k <_ ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) |
| 48 | 41 47 | mpan2d | |- ( ( k e. NN0 /\ P e. Prime ) -> ( P <_ k -> P <_ ( k + 1 ) ) ) |
| 49 | 48 | imim2d | |- ( ( k e. NN0 /\ P e. Prime ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> ( P || ( ! ` k ) -> P <_ ( k + 1 ) ) ) ) |
| 50 | 49 | com23 | |- ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ! ` k ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> P <_ ( k + 1 ) ) ) ) |
| 51 | dvdsle | |- ( ( P e. ZZ /\ ( k + 1 ) e. NN ) -> ( P || ( k + 1 ) -> P <_ ( k + 1 ) ) ) |
|
| 52 | 43 34 51 | syl2anc | |- ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( k + 1 ) -> P <_ ( k + 1 ) ) ) |
| 53 | 52 | a1dd | |- ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( k + 1 ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> P <_ ( k + 1 ) ) ) ) |
| 54 | 50 53 | jaod | |- ( ( k e. NN0 /\ P e. Prime ) -> ( ( P || ( ! ` k ) \/ P || ( k + 1 ) ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> P <_ ( k + 1 ) ) ) ) |
| 55 | 38 54 | sylbid | |- ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ! ` ( k + 1 ) ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> P <_ ( k + 1 ) ) ) ) |
| 56 | 55 | com23 | |- ( ( k e. NN0 /\ P e. Prime ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) |
| 57 | 56 | ex | |- ( k e. NN0 -> ( P e. Prime -> ( ( P || ( ! ` k ) -> P <_ k ) -> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) ) |
| 58 | 57 | a2d | |- ( k e. NN0 -> ( ( P e. Prime -> ( P || ( ! ` k ) -> P <_ k ) ) -> ( P e. Prime -> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) ) |
| 59 | 5 10 15 20 25 58 | nn0ind | |- ( N e. NN0 -> ( P e. Prime -> ( P || ( ! ` N ) -> P <_ N ) ) ) |
| 60 | 59 | 3imp | |- ( ( N e. NN0 /\ P e. Prime /\ P || ( ! ` N ) ) -> P <_ N ) |