This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Divisibility for an integer quotient. (Contributed by Thierry Arnoux, 17-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdszzq.1 | |- N = ( A / B ) |
|
| dvdszzq.2 | |- ( ph -> P e. Prime ) |
||
| dvdszzq.3 | |- ( ph -> N e. ZZ ) |
||
| dvdszzq.4 | |- ( ph -> B e. ZZ ) |
||
| dvdszzq.5 | |- ( ph -> B =/= 0 ) |
||
| dvdszzq.6 | |- ( ph -> P || A ) |
||
| dvdszzq.7 | |- ( ph -> -. P || B ) |
||
| Assertion | dvdszzq | |- ( ph -> P || N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszzq.1 | |- N = ( A / B ) |
|
| 2 | dvdszzq.2 | |- ( ph -> P e. Prime ) |
|
| 3 | dvdszzq.3 | |- ( ph -> N e. ZZ ) |
|
| 4 | dvdszzq.4 | |- ( ph -> B e. ZZ ) |
|
| 5 | dvdszzq.5 | |- ( ph -> B =/= 0 ) |
|
| 6 | dvdszzq.6 | |- ( ph -> P || A ) |
|
| 7 | dvdszzq.7 | |- ( ph -> -. P || B ) |
|
| 8 | 3 | zcnd | |- ( ph -> N e. CC ) |
| 9 | 4 | zcnd | |- ( ph -> B e. CC ) |
| 10 | dvdszrcl | |- ( P || A -> ( P e. ZZ /\ A e. ZZ ) ) |
|
| 11 | 10 | simprd | |- ( P || A -> A e. ZZ ) |
| 12 | 6 11 | syl | |- ( ph -> A e. ZZ ) |
| 13 | 12 | zcnd | |- ( ph -> A e. CC ) |
| 14 | 8 9 13 5 | ldiv | |- ( ph -> ( ( N x. B ) = A <-> N = ( A / B ) ) ) |
| 15 | 1 14 | mpbiri | |- ( ph -> ( N x. B ) = A ) |
| 16 | 6 15 | breqtrrd | |- ( ph -> P || ( N x. B ) ) |
| 17 | euclemma | |- ( ( P e. Prime /\ N e. ZZ /\ B e. ZZ ) -> ( P || ( N x. B ) <-> ( P || N \/ P || B ) ) ) |
|
| 18 | 17 | biimpa | |- ( ( ( P e. Prime /\ N e. ZZ /\ B e. ZZ ) /\ P || ( N x. B ) ) -> ( P || N \/ P || B ) ) |
| 19 | 2 3 4 16 18 | syl31anc | |- ( ph -> ( P || N \/ P || B ) ) |
| 20 | orcom | |- ( ( P || N \/ P || B ) <-> ( P || B \/ P || N ) ) |
|
| 21 | df-or | |- ( ( P || B \/ P || N ) <-> ( -. P || B -> P || N ) ) |
|
| 22 | 20 21 | sylbb | |- ( ( P || N \/ P || B ) -> ( -. P || B -> P || N ) ) |
| 23 | 19 7 22 | sylc | |- ( ph -> P || N ) |