This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 7-Jan-2017) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsval.p | |- P = ( S Xs_ R ) |
|
| prdsval.k | |- K = ( Base ` S ) |
||
| prdsval.i | |- ( ph -> dom R = I ) |
||
| prdsval.b | |- ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) ) |
||
| prdsval.a | |- ( ph -> .+ = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
||
| prdsval.t | |- ( ph -> .X. = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
||
| prdsval.m | |- ( ph -> .x. = ( f e. K , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
||
| prdsval.j | |- ( ph -> ., = ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) ) |
||
| prdsval.o | |- ( ph -> O = ( Xt_ ` ( TopOpen o. R ) ) ) |
||
| prdsval.l | |- ( ph -> .<_ = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) |
||
| prdsval.d | |- ( ph -> D = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) |
||
| prdsval.h | |- ( ph -> H = ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) ) |
||
| prdsval.x | |- ( ph -> .xb = ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) ) |
||
| prdsval.s | |- ( ph -> S e. W ) |
||
| prdsval.r | |- ( ph -> R e. Z ) |
||
| Assertion | prdsval | |- ( ph -> P = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsval.p | |- P = ( S Xs_ R ) |
|
| 2 | prdsval.k | |- K = ( Base ` S ) |
|
| 3 | prdsval.i | |- ( ph -> dom R = I ) |
|
| 4 | prdsval.b | |- ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) ) |
|
| 5 | prdsval.a | |- ( ph -> .+ = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
|
| 6 | prdsval.t | |- ( ph -> .X. = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
|
| 7 | prdsval.m | |- ( ph -> .x. = ( f e. K , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
|
| 8 | prdsval.j | |- ( ph -> ., = ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) ) |
|
| 9 | prdsval.o | |- ( ph -> O = ( Xt_ ` ( TopOpen o. R ) ) ) |
|
| 10 | prdsval.l | |- ( ph -> .<_ = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) |
|
| 11 | prdsval.d | |- ( ph -> D = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) |
|
| 12 | prdsval.h | |- ( ph -> H = ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) ) |
|
| 13 | prdsval.x | |- ( ph -> .xb = ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) ) |
|
| 14 | prdsval.s | |- ( ph -> S e. W ) |
|
| 15 | prdsval.r | |- ( ph -> R e. Z ) |
|
| 16 | df-prds | |- Xs_ = ( s e. _V , r e. _V |-> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) ) |
|
| 17 | 16 | a1i | |- ( ph -> Xs_ = ( s e. _V , r e. _V |-> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) ) ) |
| 18 | vex | |- r e. _V |
|
| 19 | 18 | rnex | |- ran r e. _V |
| 20 | 19 | uniex | |- U. ran r e. _V |
| 21 | 20 | rnex | |- ran U. ran r e. _V |
| 22 | 21 | uniex | |- U. ran U. ran r e. _V |
| 23 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 24 | 23 | strfvss | |- ( Base ` ( r ` x ) ) C_ U. ran ( r ` x ) |
| 25 | fvssunirn | |- ( r ` x ) C_ U. ran r |
|
| 26 | rnss | |- ( ( r ` x ) C_ U. ran r -> ran ( r ` x ) C_ ran U. ran r ) |
|
| 27 | uniss | |- ( ran ( r ` x ) C_ ran U. ran r -> U. ran ( r ` x ) C_ U. ran U. ran r ) |
|
| 28 | 25 26 27 | mp2b | |- U. ran ( r ` x ) C_ U. ran U. ran r |
| 29 | 24 28 | sstri | |- ( Base ` ( r ` x ) ) C_ U. ran U. ran r |
| 30 | 29 | rgenw | |- A. x e. dom r ( Base ` ( r ` x ) ) C_ U. ran U. ran r |
| 31 | iunss | |- ( U_ x e. dom r ( Base ` ( r ` x ) ) C_ U. ran U. ran r <-> A. x e. dom r ( Base ` ( r ` x ) ) C_ U. ran U. ran r ) |
|
| 32 | 30 31 | mpbir | |- U_ x e. dom r ( Base ` ( r ` x ) ) C_ U. ran U. ran r |
| 33 | 22 32 | ssexi | |- U_ x e. dom r ( Base ` ( r ` x ) ) e. _V |
| 34 | ixpssmap2g | |- ( U_ x e. dom r ( Base ` ( r ` x ) ) e. _V -> X_ x e. dom r ( Base ` ( r ` x ) ) C_ ( U_ x e. dom r ( Base ` ( r ` x ) ) ^m dom r ) ) |
|
| 35 | 33 34 | ax-mp | |- X_ x e. dom r ( Base ` ( r ` x ) ) C_ ( U_ x e. dom r ( Base ` ( r ` x ) ) ^m dom r ) |
| 36 | ovex | |- ( U_ x e. dom r ( Base ` ( r ` x ) ) ^m dom r ) e. _V |
|
| 37 | 36 | ssex | |- ( X_ x e. dom r ( Base ` ( r ` x ) ) C_ ( U_ x e. dom r ( Base ` ( r ` x ) ) ^m dom r ) -> X_ x e. dom r ( Base ` ( r ` x ) ) e. _V ) |
| 38 | 35 37 | mp1i | |- ( ( ( ph /\ s = S ) /\ r = R ) -> X_ x e. dom r ( Base ` ( r ` x ) ) e. _V ) |
| 39 | simpr | |- ( ( ( ph /\ s = S ) /\ r = R ) -> r = R ) |
|
| 40 | 39 | fveq1d | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( r ` x ) = ( R ` x ) ) |
| 41 | 40 | fveq2d | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( Base ` ( r ` x ) ) = ( Base ` ( R ` x ) ) ) |
| 42 | 41 | ixpeq2dv | |- ( ( ( ph /\ s = S ) /\ r = R ) -> X_ x e. I ( Base ` ( r ` x ) ) = X_ x e. I ( Base ` ( R ` x ) ) ) |
| 43 | 39 | dmeqd | |- ( ( ( ph /\ s = S ) /\ r = R ) -> dom r = dom R ) |
| 44 | 3 | ad2antrr | |- ( ( ( ph /\ s = S ) /\ r = R ) -> dom R = I ) |
| 45 | 43 44 | eqtrd | |- ( ( ( ph /\ s = S ) /\ r = R ) -> dom r = I ) |
| 46 | 45 | ixpeq1d | |- ( ( ( ph /\ s = S ) /\ r = R ) -> X_ x e. dom r ( Base ` ( r ` x ) ) = X_ x e. I ( Base ` ( r ` x ) ) ) |
| 47 | 4 | ad2antrr | |- ( ( ( ph /\ s = S ) /\ r = R ) -> B = X_ x e. I ( Base ` ( R ` x ) ) ) |
| 48 | 42 46 47 | 3eqtr4d | |- ( ( ( ph /\ s = S ) /\ r = R ) -> X_ x e. dom r ( Base ` ( r ` x ) ) = B ) |
| 49 | prdsvallem | |- ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) e. _V |
|
| 50 | 49 | a1i | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) e. _V ) |
| 51 | simpr | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> v = B ) |
|
| 52 | 45 | adantr | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> dom r = I ) |
| 53 | 52 | ixpeq1d | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) = X_ x e. I ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) |
| 54 | 40 | fveq2d | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( Hom ` ( r ` x ) ) = ( Hom ` ( R ` x ) ) ) |
| 55 | 54 | oveqd | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) = ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) |
| 56 | 55 | ixpeq2dv | |- ( ( ( ph /\ s = S ) /\ r = R ) -> X_ x e. I ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) = X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) |
| 57 | 56 | adantr | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> X_ x e. I ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) = X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) |
| 58 | 53 57 | eqtrd | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) = X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) |
| 59 | 51 51 58 | mpoeq123dv | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) = ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 60 | 12 | ad3antrrr | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> H = ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 61 | 59 60 | eqtr4d | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) = H ) |
| 62 | simplr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> v = B ) |
|
| 63 | 62 | opeq2d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( Base ` ndx ) , v >. = <. ( Base ` ndx ) , B >. ) |
| 64 | 40 | fveq2d | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( +g ` ( r ` x ) ) = ( +g ` ( R ` x ) ) ) |
| 65 | 64 | oveqd | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) = ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) |
| 66 | 45 65 | mpteq12dv | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 67 | 66 | adantr | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 68 | 51 51 67 | mpoeq123dv | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 69 | 68 | adantr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 70 | 5 | ad4antr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> .+ = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 71 | 69 70 | eqtr4d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) = .+ ) |
| 72 | 71 | opeq2d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. = <. ( +g ` ndx ) , .+ >. ) |
| 73 | 40 | fveq2d | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( .r ` ( r ` x ) ) = ( .r ` ( R ` x ) ) ) |
| 74 | 73 | oveqd | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) = ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) |
| 75 | 45 74 | mpteq12dv | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 76 | 75 | adantr | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 77 | 51 51 76 | mpoeq123dv | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 78 | 77 | adantr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 79 | 6 | ad4antr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> .X. = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 80 | 78 79 | eqtr4d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) = .X. ) |
| 81 | 80 | opeq2d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. = <. ( .r ` ndx ) , .X. >. ) |
| 82 | 63 72 81 | tpeq123d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } ) |
| 83 | simp-4r | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> s = S ) |
|
| 84 | 83 | opeq2d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( Scalar ` ndx ) , s >. = <. ( Scalar ` ndx ) , S >. ) |
| 85 | simpllr | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> s = S ) |
|
| 86 | 85 | fveq2d | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( Base ` s ) = ( Base ` S ) ) |
| 87 | 86 2 | eqtr4di | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( Base ` s ) = K ) |
| 88 | 40 | fveq2d | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( .s ` ( r ` x ) ) = ( .s ` ( R ` x ) ) ) |
| 89 | 88 | oveqd | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) = ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) |
| 90 | 45 89 | mpteq12dv | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 91 | 90 | adantr | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 92 | 87 51 91 | mpoeq123dv | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) = ( f e. K , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 93 | 92 | adantr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) = ( f e. K , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 94 | 7 | ad4antr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> .x. = ( f e. K , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 95 | 93 94 | eqtr4d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) = .x. ) |
| 96 | 95 | opeq2d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. = <. ( .s ` ndx ) , .x. >. ) |
| 97 | 40 | fveq2d | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( .i ` ( r ` x ) ) = ( .i ` ( R ` x ) ) ) |
| 98 | 97 | oveqd | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) = ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) |
| 99 | 45 98 | mpteq12dv | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 100 | 99 | adantr | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 101 | 85 100 | oveq12d | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) = ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 102 | 51 51 101 | mpoeq123dv | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) = ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) ) |
| 103 | 102 | adantr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) = ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) ) |
| 104 | 8 | ad4antr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ., = ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) ) |
| 105 | 103 104 | eqtr4d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) = ., ) |
| 106 | 105 | opeq2d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. = <. ( .i ` ndx ) , ., >. ) |
| 107 | 84 96 106 | tpeq123d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } = { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) |
| 108 | 82 107 | uneq12d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |
| 109 | simpllr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> r = R ) |
|
| 110 | 109 | coeq2d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( TopOpen o. r ) = ( TopOpen o. R ) ) |
| 111 | 110 | fveq2d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( Xt_ ` ( TopOpen o. r ) ) = ( Xt_ ` ( TopOpen o. R ) ) ) |
| 112 | 9 | ad4antr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> O = ( Xt_ ` ( TopOpen o. R ) ) ) |
| 113 | 111 112 | eqtr4d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( Xt_ ` ( TopOpen o. r ) ) = O ) |
| 114 | 113 | opeq2d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. = <. ( TopSet ` ndx ) , O >. ) |
| 115 | 51 | sseq2d | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( { f , g } C_ v <-> { f , g } C_ B ) ) |
| 116 | 40 | fveq2d | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( le ` ( r ` x ) ) = ( le ` ( R ` x ) ) ) |
| 117 | 116 | breqd | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) <-> ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) ) |
| 118 | 45 117 | raleqbidv | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) <-> A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) ) |
| 119 | 118 | adantr | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) <-> A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) ) |
| 120 | 115 119 | anbi12d | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) <-> ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 121 | 120 | opabbidv | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) |
| 122 | 121 | adantr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) |
| 123 | 10 | ad4antr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> .<_ = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) |
| 124 | 122 123 | eqtr4d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } = .<_ ) |
| 125 | 124 | opeq2d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. = <. ( le ` ndx ) , .<_ >. ) |
| 126 | 40 | fveq2d | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( dist ` ( r ` x ) ) = ( dist ` ( R ` x ) ) ) |
| 127 | 126 | oveqd | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) = ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) |
| 128 | 45 127 | mpteq12dv | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 129 | 128 | adantr | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 130 | 129 | rneqd | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) = ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 131 | 130 | uneq1d | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) = ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) ) |
| 132 | 131 | supeq1d | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) = sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| 133 | 51 51 132 | mpoeq123dv | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) |
| 134 | 133 | adantr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) |
| 135 | 11 | ad4antr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> D = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) |
| 136 | 134 135 | eqtr4d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) = D ) |
| 137 | 136 | opeq2d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. = <. ( dist ` ndx ) , D >. ) |
| 138 | 114 125 137 | tpeq123d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } = { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } ) |
| 139 | simpr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> h = H ) |
|
| 140 | 139 | opeq2d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( Hom ` ndx ) , h >. = <. ( Hom ` ndx ) , H >. ) |
| 141 | 62 | sqxpeqd | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( v X. v ) = ( B X. B ) ) |
| 142 | 139 | oveqd | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( ( 2nd ` a ) h c ) = ( ( 2nd ` a ) H c ) ) |
| 143 | 139 | fveq1d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( h ` a ) = ( H ` a ) ) |
| 144 | 40 | fveq2d | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( comp ` ( r ` x ) ) = ( comp ` ( R ` x ) ) ) |
| 145 | 144 | oveqd | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) = ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ) |
| 146 | 145 | oveqd | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) = ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) |
| 147 | 45 146 | mpteq12dv | |- ( ( ( ph /\ s = S ) /\ r = R ) -> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) = ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) |
| 148 | 147 | ad2antrr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) = ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) |
| 149 | 142 143 148 | mpoeq123dv | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) = ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) |
| 150 | 141 62 149 | mpoeq123dv | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) = ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) ) |
| 151 | 13 | ad4antr | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> .xb = ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) ) |
| 152 | 150 151 | eqtr4d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) = .xb ) |
| 153 | 152 | opeq2d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. = <. ( comp ` ndx ) , .xb >. ) |
| 154 | 140 153 | preq12d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } = { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) |
| 155 | 138 154 | uneq12d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) = ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) |
| 156 | 108 155 | uneq12d | |- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) ) |
| 157 | 50 61 156 | csbied2 | |- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) ) |
| 158 | 38 48 157 | csbied2 | |- ( ( ( ph /\ s = S ) /\ r = R ) -> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) ) |
| 159 | 158 | anasss | |- ( ( ph /\ ( s = S /\ r = R ) ) -> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) ) |
| 160 | 14 | elexd | |- ( ph -> S e. _V ) |
| 161 | 15 | elexd | |- ( ph -> R e. _V ) |
| 162 | tpex | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } e. _V |
|
| 163 | tpex | |- { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } e. _V |
|
| 164 | 162 163 | unex | |- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) e. _V |
| 165 | tpex | |- { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } e. _V |
|
| 166 | prex | |- { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } e. _V |
|
| 167 | 165 166 | unex | |- ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) e. _V |
| 168 | 164 167 | unex | |- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) e. _V |
| 169 | 168 | a1i | |- ( ph -> ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) e. _V ) |
| 170 | 17 159 160 161 169 | ovmpod | |- ( ph -> ( S Xs_ R ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) ) |
| 171 | 1 170 | eqtrid | |- ( ph -> P = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) ) |