This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg avoids ax-rep . (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpssmap2g | |- ( U_ x e. A B e. V -> X_ x e. A B C_ ( U_ x e. A B ^m A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpf | |- ( f e. X_ x e. A B -> f : A --> U_ x e. A B ) |
|
| 2 | 1 | adantl | |- ( ( U_ x e. A B e. V /\ f e. X_ x e. A B ) -> f : A --> U_ x e. A B ) |
| 3 | n0i | |- ( f e. X_ x e. A B -> -. X_ x e. A B = (/) ) |
|
| 4 | ixpprc | |- ( -. A e. _V -> X_ x e. A B = (/) ) |
|
| 5 | 3 4 | nsyl2 | |- ( f e. X_ x e. A B -> A e. _V ) |
| 6 | elmapg | |- ( ( U_ x e. A B e. V /\ A e. _V ) -> ( f e. ( U_ x e. A B ^m A ) <-> f : A --> U_ x e. A B ) ) |
|
| 7 | 5 6 | sylan2 | |- ( ( U_ x e. A B e. V /\ f e. X_ x e. A B ) -> ( f e. ( U_ x e. A B ^m A ) <-> f : A --> U_ x e. A B ) ) |
| 8 | 2 7 | mpbird | |- ( ( U_ x e. A B e. V /\ f e. X_ x e. A B ) -> f e. ( U_ x e. A B ^m A ) ) |
| 9 | 8 | ex | |- ( U_ x e. A B e. V -> ( f e. X_ x e. A B -> f e. ( U_ x e. A B ^m A ) ) ) |
| 10 | 9 | ssrdv | |- ( U_ x e. A B e. V -> X_ x e. A B C_ ( U_ x e. A B ^m A ) ) |