This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prdsval . (Contributed by Stefan O'Rear, 3-Jan-2015) Extracted from the former proof of prdsval , dependency on df-hom removed. (Revised by AV, 13-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prdsvallem | |- ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- v e. _V |
|
| 2 | ovex | |- ( U. ran U. ran U. ran r ^m dom r ) e. _V |
|
| 3 | 2 | pwex | |- ~P ( U. ran U. ran U. ran r ^m dom r ) e. _V |
| 4 | ovssunirn | |- ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) C_ U. ran ( Hom ` ( r ` x ) ) |
|
| 5 | homid | |- Hom = Slot ( Hom ` ndx ) |
|
| 6 | 5 | strfvss | |- ( Hom ` ( r ` x ) ) C_ U. ran ( r ` x ) |
| 7 | fvssunirn | |- ( r ` x ) C_ U. ran r |
|
| 8 | rnss | |- ( ( r ` x ) C_ U. ran r -> ran ( r ` x ) C_ ran U. ran r ) |
|
| 9 | uniss | |- ( ran ( r ` x ) C_ ran U. ran r -> U. ran ( r ` x ) C_ U. ran U. ran r ) |
|
| 10 | 7 8 9 | mp2b | |- U. ran ( r ` x ) C_ U. ran U. ran r |
| 11 | 6 10 | sstri | |- ( Hom ` ( r ` x ) ) C_ U. ran U. ran r |
| 12 | rnss | |- ( ( Hom ` ( r ` x ) ) C_ U. ran U. ran r -> ran ( Hom ` ( r ` x ) ) C_ ran U. ran U. ran r ) |
|
| 13 | uniss | |- ( ran ( Hom ` ( r ` x ) ) C_ ran U. ran U. ran r -> U. ran ( Hom ` ( r ` x ) ) C_ U. ran U. ran U. ran r ) |
|
| 14 | 11 12 13 | mp2b | |- U. ran ( Hom ` ( r ` x ) ) C_ U. ran U. ran U. ran r |
| 15 | 4 14 | sstri | |- ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) C_ U. ran U. ran U. ran r |
| 16 | 15 | rgenw | |- A. x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) C_ U. ran U. ran U. ran r |
| 17 | ss2ixp | |- ( A. x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) C_ U. ran U. ran U. ran r -> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) C_ X_ x e. dom r U. ran U. ran U. ran r ) |
|
| 18 | 16 17 | ax-mp | |- X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) C_ X_ x e. dom r U. ran U. ran U. ran r |
| 19 | vex | |- r e. _V |
|
| 20 | 19 | dmex | |- dom r e. _V |
| 21 | 19 | rnex | |- ran r e. _V |
| 22 | 21 | uniex | |- U. ran r e. _V |
| 23 | 22 | rnex | |- ran U. ran r e. _V |
| 24 | 23 | uniex | |- U. ran U. ran r e. _V |
| 25 | 24 | rnex | |- ran U. ran U. ran r e. _V |
| 26 | 25 | uniex | |- U. ran U. ran U. ran r e. _V |
| 27 | 20 26 | ixpconst | |- X_ x e. dom r U. ran U. ran U. ran r = ( U. ran U. ran U. ran r ^m dom r ) |
| 28 | 18 27 | sseqtri | |- X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) C_ ( U. ran U. ran U. ran r ^m dom r ) |
| 29 | 2 28 | elpwi2 | |- X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) e. ~P ( U. ran U. ran U. ran r ^m dom r ) |
| 30 | 29 | rgen2w | |- A. f e. v A. g e. v X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) e. ~P ( U. ran U. ran U. ran r ^m dom r ) |
| 31 | 1 1 3 30 | mpoexw | |- ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) e. _V |