This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Thierry Arnoux, 15-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-prds | |- Xs_ = ( s e. _V , r e. _V |-> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cprds | |- Xs_ |
|
| 1 | vs | |- s |
|
| 2 | cvv | |- _V |
|
| 3 | vr | |- r |
|
| 4 | vx | |- x |
|
| 5 | 3 | cv | |- r |
| 6 | 5 | cdm | |- dom r |
| 7 | cbs | |- Base |
|
| 8 | 4 | cv | |- x |
| 9 | 8 5 | cfv | |- ( r ` x ) |
| 10 | 9 7 | cfv | |- ( Base ` ( r ` x ) ) |
| 11 | 4 6 10 | cixp | |- X_ x e. dom r ( Base ` ( r ` x ) ) |
| 12 | vv | |- v |
|
| 13 | vf | |- f |
|
| 14 | 12 | cv | |- v |
| 15 | vg | |- g |
|
| 16 | 13 | cv | |- f |
| 17 | 8 16 | cfv | |- ( f ` x ) |
| 18 | chom | |- Hom |
|
| 19 | 9 18 | cfv | |- ( Hom ` ( r ` x ) ) |
| 20 | 15 | cv | |- g |
| 21 | 8 20 | cfv | |- ( g ` x ) |
| 22 | 17 21 19 | co | |- ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) |
| 23 | 4 6 22 | cixp | |- X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) |
| 24 | 13 15 14 14 23 | cmpo | |- ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) |
| 25 | vh | |- h |
|
| 26 | cnx | |- ndx |
|
| 27 | 26 7 | cfv | |- ( Base ` ndx ) |
| 28 | 27 14 | cop | |- <. ( Base ` ndx ) , v >. |
| 29 | cplusg | |- +g |
|
| 30 | 26 29 | cfv | |- ( +g ` ndx ) |
| 31 | 9 29 | cfv | |- ( +g ` ( r ` x ) ) |
| 32 | 17 21 31 | co | |- ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) |
| 33 | 4 6 32 | cmpt | |- ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) |
| 34 | 13 15 14 14 33 | cmpo | |- ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) |
| 35 | 30 34 | cop | |- <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. |
| 36 | cmulr | |- .r |
|
| 37 | 26 36 | cfv | |- ( .r ` ndx ) |
| 38 | 9 36 | cfv | |- ( .r ` ( r ` x ) ) |
| 39 | 17 21 38 | co | |- ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) |
| 40 | 4 6 39 | cmpt | |- ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) |
| 41 | 13 15 14 14 40 | cmpo | |- ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) |
| 42 | 37 41 | cop | |- <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. |
| 43 | 28 35 42 | ctp | |- { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } |
| 44 | csca | |- Scalar |
|
| 45 | 26 44 | cfv | |- ( Scalar ` ndx ) |
| 46 | 1 | cv | |- s |
| 47 | 45 46 | cop | |- <. ( Scalar ` ndx ) , s >. |
| 48 | cvsca | |- .s |
|
| 49 | 26 48 | cfv | |- ( .s ` ndx ) |
| 50 | 46 7 | cfv | |- ( Base ` s ) |
| 51 | 9 48 | cfv | |- ( .s ` ( r ` x ) ) |
| 52 | 16 21 51 | co | |- ( f ( .s ` ( r ` x ) ) ( g ` x ) ) |
| 53 | 4 6 52 | cmpt | |- ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) |
| 54 | 13 15 50 14 53 | cmpo | |- ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) |
| 55 | 49 54 | cop | |- <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. |
| 56 | cip | |- .i |
|
| 57 | 26 56 | cfv | |- ( .i ` ndx ) |
| 58 | cgsu | |- gsum |
|
| 59 | 9 56 | cfv | |- ( .i ` ( r ` x ) ) |
| 60 | 17 21 59 | co | |- ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) |
| 61 | 4 6 60 | cmpt | |- ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) |
| 62 | 46 61 58 | co | |- ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) |
| 63 | 13 15 14 14 62 | cmpo | |- ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) |
| 64 | 57 63 | cop | |- <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. |
| 65 | 47 55 64 | ctp | |- { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } |
| 66 | 43 65 | cun | |- ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) |
| 67 | cts | |- TopSet |
|
| 68 | 26 67 | cfv | |- ( TopSet ` ndx ) |
| 69 | cpt | |- Xt_ |
|
| 70 | ctopn | |- TopOpen |
|
| 71 | 70 5 | ccom | |- ( TopOpen o. r ) |
| 72 | 71 69 | cfv | |- ( Xt_ ` ( TopOpen o. r ) ) |
| 73 | 68 72 | cop | |- <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. |
| 74 | cple | |- le |
|
| 75 | 26 74 | cfv | |- ( le ` ndx ) |
| 76 | 16 20 | cpr | |- { f , g } |
| 77 | 76 14 | wss | |- { f , g } C_ v |
| 78 | 9 74 | cfv | |- ( le ` ( r ` x ) ) |
| 79 | 17 21 78 | wbr | |- ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) |
| 80 | 79 4 6 | wral | |- A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) |
| 81 | 77 80 | wa | |- ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) |
| 82 | 81 13 15 | copab | |- { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } |
| 83 | 75 82 | cop | |- <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. |
| 84 | cds | |- dist |
|
| 85 | 26 84 | cfv | |- ( dist ` ndx ) |
| 86 | 9 84 | cfv | |- ( dist ` ( r ` x ) ) |
| 87 | 17 21 86 | co | |- ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) |
| 88 | 4 6 87 | cmpt | |- ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) |
| 89 | 88 | crn | |- ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) |
| 90 | cc0 | |- 0 |
|
| 91 | 90 | csn | |- { 0 } |
| 92 | 89 91 | cun | |- ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) |
| 93 | cxr | |- RR* |
|
| 94 | clt | |- < |
|
| 95 | 92 93 94 | csup | |- sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) |
| 96 | 13 15 14 14 95 | cmpo | |- ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| 97 | 85 96 | cop | |- <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. |
| 98 | 73 83 97 | ctp | |- { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } |
| 99 | 26 18 | cfv | |- ( Hom ` ndx ) |
| 100 | 25 | cv | |- h |
| 101 | 99 100 | cop | |- <. ( Hom ` ndx ) , h >. |
| 102 | cco | |- comp |
|
| 103 | 26 102 | cfv | |- ( comp ` ndx ) |
| 104 | va | |- a |
|
| 105 | 14 14 | cxp | |- ( v X. v ) |
| 106 | vc | |- c |
|
| 107 | vd | |- d |
|
| 108 | c2nd | |- 2nd |
|
| 109 | 104 | cv | |- a |
| 110 | 109 108 | cfv | |- ( 2nd ` a ) |
| 111 | 106 | cv | |- c |
| 112 | 110 111 100 | co | |- ( ( 2nd ` a ) h c ) |
| 113 | ve | |- e |
|
| 114 | 109 100 | cfv | |- ( h ` a ) |
| 115 | 107 | cv | |- d |
| 116 | 8 115 | cfv | |- ( d ` x ) |
| 117 | c1st | |- 1st |
|
| 118 | 109 117 | cfv | |- ( 1st ` a ) |
| 119 | 8 118 | cfv | |- ( ( 1st ` a ) ` x ) |
| 120 | 8 110 | cfv | |- ( ( 2nd ` a ) ` x ) |
| 121 | 119 120 | cop | |- <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. |
| 122 | 9 102 | cfv | |- ( comp ` ( r ` x ) ) |
| 123 | 8 111 | cfv | |- ( c ` x ) |
| 124 | 121 123 122 | co | |- ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) |
| 125 | 113 | cv | |- e |
| 126 | 8 125 | cfv | |- ( e ` x ) |
| 127 | 116 126 124 | co | |- ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) |
| 128 | 4 6 127 | cmpt | |- ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) |
| 129 | 107 113 112 114 128 | cmpo | |- ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) |
| 130 | 104 106 105 14 129 | cmpo | |- ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) |
| 131 | 103 130 | cop | |- <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. |
| 132 | 101 131 | cpr | |- { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } |
| 133 | 98 132 | cun | |- ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) |
| 134 | 66 133 | cun | |- ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) |
| 135 | 25 24 134 | csb | |- [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) |
| 136 | 12 11 135 | csb | |- [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) |
| 137 | 1 3 2 2 136 | cmpo | |- ( s e. _V , r e. _V |-> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) ) |
| 138 | 0 137 | wceq | |- Xs_ = ( s e. _V , r e. _V |-> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) ) |