This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 7-Jan-2017) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsval.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| prdsval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| prdsval.i | ⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) | ||
| prdsval.b | ⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | ||
| prdsval.a | ⊢ ( 𝜑 → + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | ||
| prdsval.t | ⊢ ( 𝜑 → × = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | ||
| prdsval.m | ⊢ ( 𝜑 → · = ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | ||
| prdsval.j | ⊢ ( 𝜑 → , = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | ||
| prdsval.o | ⊢ ( 𝜑 → 𝑂 = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) | ||
| prdsval.l | ⊢ ( 𝜑 → ≤ = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) | ||
| prdsval.d | ⊢ ( 𝜑 → 𝐷 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) | ||
| prdsval.h | ⊢ ( 𝜑 → 𝐻 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) | ||
| prdsval.x | ⊢ ( 𝜑 → ∙ = ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) 𝐻 𝑐 ) , 𝑒 ∈ ( 𝐻 ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) ) | ||
| prdsval.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
| prdsval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| Assertion | prdsval | ⊢ ( 𝜑 → 𝑃 = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsval.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 3 | prdsval.i | ⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) | |
| 4 | prdsval.b | ⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | |
| 5 | prdsval.a | ⊢ ( 𝜑 → + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | |
| 6 | prdsval.t | ⊢ ( 𝜑 → × = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | |
| 7 | prdsval.m | ⊢ ( 𝜑 → · = ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | |
| 8 | prdsval.j | ⊢ ( 𝜑 → , = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | |
| 9 | prdsval.o | ⊢ ( 𝜑 → 𝑂 = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) | |
| 10 | prdsval.l | ⊢ ( 𝜑 → ≤ = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) | |
| 11 | prdsval.d | ⊢ ( 𝜑 → 𝐷 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) | |
| 12 | prdsval.h | ⊢ ( 𝜑 → 𝐻 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) | |
| 13 | prdsval.x | ⊢ ( 𝜑 → ∙ = ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) 𝐻 𝑐 ) , 𝑒 ∈ ( 𝐻 ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) ) | |
| 14 | prdsval.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
| 15 | prdsval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 16 | df-prds | ⊢ Xs = ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ⦋ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) / 𝑣 ⦌ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) | |
| 17 | 16 | a1i | ⊢ ( 𝜑 → Xs = ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ⦋ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) / 𝑣 ⦌ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) ) |
| 18 | vex | ⊢ 𝑟 ∈ V | |
| 19 | 18 | rnex | ⊢ ran 𝑟 ∈ V |
| 20 | 19 | uniex | ⊢ ∪ ran 𝑟 ∈ V |
| 21 | 20 | rnex | ⊢ ran ∪ ran 𝑟 ∈ V |
| 22 | 21 | uniex | ⊢ ∪ ran ∪ ran 𝑟 ∈ V |
| 23 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 24 | 23 | strfvss | ⊢ ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ∪ ran ( 𝑟 ‘ 𝑥 ) |
| 25 | fvssunirn | ⊢ ( 𝑟 ‘ 𝑥 ) ⊆ ∪ ran 𝑟 | |
| 26 | rnss | ⊢ ( ( 𝑟 ‘ 𝑥 ) ⊆ ∪ ran 𝑟 → ran ( 𝑟 ‘ 𝑥 ) ⊆ ran ∪ ran 𝑟 ) | |
| 27 | uniss | ⊢ ( ran ( 𝑟 ‘ 𝑥 ) ⊆ ran ∪ ran 𝑟 → ∪ ran ( 𝑟 ‘ 𝑥 ) ⊆ ∪ ran ∪ ran 𝑟 ) | |
| 28 | 25 26 27 | mp2b | ⊢ ∪ ran ( 𝑟 ‘ 𝑥 ) ⊆ ∪ ran ∪ ran 𝑟 |
| 29 | 24 28 | sstri | ⊢ ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑟 |
| 30 | 29 | rgenw | ⊢ ∀ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑟 |
| 31 | iunss | ⊢ ( ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑟 ↔ ∀ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑟 ) | |
| 32 | 30 31 | mpbir | ⊢ ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑟 |
| 33 | 22 32 | ssexi | ⊢ ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∈ V |
| 34 | ixpssmap2g | ⊢ ( ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∈ V → X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ( ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ↑m dom 𝑟 ) ) | |
| 35 | 33 34 | ax-mp | ⊢ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ( ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ↑m dom 𝑟 ) |
| 36 | ovex | ⊢ ( ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ↑m dom 𝑟 ) ∈ V | |
| 37 | 36 | ssex | ⊢ ( X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ( ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ↑m dom 𝑟 ) → X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∈ V ) |
| 38 | 35 37 | mp1i | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∈ V ) |
| 39 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) | |
| 40 | 39 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑟 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ) |
| 41 | 40 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 42 | 41 | ixpeq2dv | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 43 | 39 | dmeqd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → dom 𝑟 = dom 𝑅 ) |
| 44 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → dom 𝑅 = 𝐼 ) |
| 45 | 43 44 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → dom 𝑟 = 𝐼 ) |
| 46 | 45 | ixpeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ) |
| 47 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 48 | 42 46 47 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) = 𝐵 ) |
| 49 | prdsvallem | ⊢ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∈ V | |
| 50 | 49 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∈ V ) |
| 51 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → 𝑣 = 𝐵 ) | |
| 52 | 45 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → dom 𝑟 = 𝐼 ) |
| 53 | 52 | ixpeq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 54 | 40 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) = ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 55 | 54 | oveqd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 56 | 55 | ixpeq2dv | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 57 | 56 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 58 | 53 57 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 59 | 51 51 58 | mpoeq123dv | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 60 | 12 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → 𝐻 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 61 | 59 60 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = 𝐻 ) |
| 62 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝑣 = 𝐵 ) | |
| 63 | 62 | opeq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( Base ‘ ndx ) , 𝑣 〉 = 〈 ( Base ‘ ndx ) , 𝐵 〉 ) |
| 64 | 40 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 65 | 64 | oveqd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 66 | 45 65 | mpteq12dv | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 67 | 66 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 68 | 51 51 67 | mpoeq123dv | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 69 | 68 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 70 | 5 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 71 | 69 70 | eqtr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = + ) |
| 72 | 71 | opeq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 = 〈 ( +g ‘ ndx ) , + 〉 ) |
| 73 | 40 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) = ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 74 | 73 | oveqd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 75 | 45 74 | mpteq12dv | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 76 | 75 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 77 | 51 51 76 | mpoeq123dv | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 78 | 77 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 79 | 6 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → × = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 80 | 78 79 | eqtr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = × ) |
| 81 | 80 | opeq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 = 〈 ( .r ‘ ndx ) , × 〉 ) |
| 82 | 63 72 81 | tpeq123d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ) |
| 83 | simp-4r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝑠 = 𝑆 ) | |
| 84 | 83 | opeq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( Scalar ‘ ndx ) , 𝑠 〉 = 〈 ( Scalar ‘ ndx ) , 𝑆 〉 ) |
| 85 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → 𝑠 = 𝑆 ) | |
| 86 | 85 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
| 87 | 86 2 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( Base ‘ 𝑠 ) = 𝐾 ) |
| 88 | 40 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) = ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 89 | 88 | oveqd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 90 | 45 89 | mpteq12dv | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 91 | 90 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 92 | 87 51 91 | mpoeq123dv | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 93 | 92 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 94 | 7 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → · = ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 95 | 93 94 | eqtr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = · ) |
| 96 | 95 | opeq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 = 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) |
| 97 | 40 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) = ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 98 | 97 | oveqd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 99 | 45 98 | mpteq12dv | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 100 | 99 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 101 | 85 100 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 102 | 51 51 101 | mpoeq123dv | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 103 | 102 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 104 | 8 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → , = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 105 | 103 104 | eqtr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) = , ) |
| 106 | 105 | opeq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 = 〈 ( ·𝑖 ‘ ndx ) , , 〉 ) |
| 107 | 84 96 106 | tpeq123d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } = { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) |
| 108 | 82 107 | uneq12d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ) |
| 109 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝑟 = 𝑅 ) | |
| 110 | 109 | coeq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( TopOpen ∘ 𝑟 ) = ( TopOpen ∘ 𝑅 ) ) |
| 111 | 110 | fveq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 112 | 9 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝑂 = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 113 | 111 112 | eqtr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) = 𝑂 ) |
| 114 | 113 | opeq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 = 〈 ( TopSet ‘ ndx ) , 𝑂 〉 ) |
| 115 | 51 | sseq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( { 𝑓 , 𝑔 } ⊆ 𝑣 ↔ { 𝑓 , 𝑔 } ⊆ 𝐵 ) ) |
| 116 | 40 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( le ‘ ( 𝑟 ‘ 𝑥 ) ) = ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 117 | 116 | breqd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 118 | 45 117 | raleqbidv | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 119 | 118 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 120 | 115 119 | anbi12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ↔ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 121 | 120 | opabbidv | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
| 122 | 121 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
| 123 | 10 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ≤ = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
| 124 | 122 123 | eqtr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } = ≤ ) |
| 125 | 124 | opeq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 = 〈 ( le ‘ ndx ) , ≤ 〉 ) |
| 126 | 40 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) = ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 127 | 126 | oveqd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 128 | 45 127 | mpteq12dv | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 129 | 128 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 130 | 129 | rneqd | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 131 | 130 | uneq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) = ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
| 132 | 131 | supeq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 133 | 51 51 132 | mpoeq123dv | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
| 134 | 133 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
| 135 | 11 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝐷 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
| 136 | 134 135 | eqtr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = 𝐷 ) |
| 137 | 136 | opeq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 = 〈 ( dist ‘ ndx ) , 𝐷 〉 ) |
| 138 | 114 125 137 | tpeq123d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } = { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) |
| 139 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ℎ = 𝐻 ) | |
| 140 | 139 | opeq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( Hom ‘ ndx ) , ℎ 〉 = 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) |
| 141 | 62 | sqxpeqd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑣 × 𝑣 ) = ( 𝐵 × 𝐵 ) ) |
| 142 | 139 | oveqd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) = ( ( 2nd ‘ 𝑎 ) 𝐻 𝑐 ) ) |
| 143 | 139 | fveq1d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( ℎ ‘ 𝑎 ) = ( 𝐻 ‘ 𝑎 ) ) |
| 144 | 40 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) = ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 145 | 144 | oveqd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) = ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ) |
| 146 | 145 | oveqd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) = ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) |
| 147 | 45 146 | mpteq12dv | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) |
| 148 | 147 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) |
| 149 | 142 143 148 | mpoeq123dv | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) = ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) 𝐻 𝑐 ) , 𝑒 ∈ ( 𝐻 ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) |
| 150 | 141 62 149 | mpoeq123dv | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) = ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) 𝐻 𝑐 ) , 𝑒 ∈ ( 𝐻 ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) ) |
| 151 | 13 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ∙ = ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) 𝐻 𝑐 ) , 𝑒 ∈ ( 𝐻 ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) ) |
| 152 | 150 151 | eqtr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) = ∙ ) |
| 153 | 152 | opeq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 = 〈 ( comp ‘ ndx ) , ∙ 〉 ) |
| 154 | 140 153 | preq12d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } = { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) |
| 155 | 138 154 | uneq12d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) = ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) |
| 156 | 108 155 | uneq12d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ) |
| 157 | 50 61 156 | csbied2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ) |
| 158 | 38 48 157 | csbied2 | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ⦋ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) / 𝑣 ⦌ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ) |
| 159 | 158 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) ) → ⦋ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) / 𝑣 ⦌ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ) |
| 160 | 14 | elexd | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 161 | 15 | elexd | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 162 | tpex | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∈ V | |
| 163 | tpex | ⊢ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ∈ V | |
| 164 | 162 163 | unex | ⊢ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∈ V |
| 165 | tpex | ⊢ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∈ V | |
| 166 | prex | ⊢ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ∈ V | |
| 167 | 165 166 | unex | ⊢ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ∈ V |
| 168 | 164 167 | unex | ⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ∈ V |
| 169 | 168 | a1i | ⊢ ( 𝜑 → ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ∈ V ) |
| 170 | 17 159 160 161 169 | ovmpod | ⊢ ( 𝜑 → ( 𝑆 Xs 𝑅 ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ) |
| 171 | 1 170 | eqtrid | ⊢ ( 𝜑 → 𝑃 = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ) |