This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsinvlem.y | |- Y = ( S Xs_ R ) |
|
| prdsinvlem.b | |- B = ( Base ` Y ) |
||
| prdsinvlem.p | |- .+ = ( +g ` Y ) |
||
| prdsinvlem.s | |- ( ph -> S e. V ) |
||
| prdsinvlem.i | |- ( ph -> I e. W ) |
||
| prdsinvlem.r | |- ( ph -> R : I --> Grp ) |
||
| prdsinvlem.f | |- ( ph -> F e. B ) |
||
| prdsinvlem.z | |- .0. = ( 0g o. R ) |
||
| prdsinvlem.n | |- N = ( y e. I |-> ( ( invg ` ( R ` y ) ) ` ( F ` y ) ) ) |
||
| Assertion | prdsinvlem | |- ( ph -> ( N e. B /\ ( N .+ F ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsinvlem.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsinvlem.b | |- B = ( Base ` Y ) |
|
| 3 | prdsinvlem.p | |- .+ = ( +g ` Y ) |
|
| 4 | prdsinvlem.s | |- ( ph -> S e. V ) |
|
| 5 | prdsinvlem.i | |- ( ph -> I e. W ) |
|
| 6 | prdsinvlem.r | |- ( ph -> R : I --> Grp ) |
|
| 7 | prdsinvlem.f | |- ( ph -> F e. B ) |
|
| 8 | prdsinvlem.z | |- .0. = ( 0g o. R ) |
|
| 9 | prdsinvlem.n | |- N = ( y e. I |-> ( ( invg ` ( R ` y ) ) ` ( F ` y ) ) ) |
|
| 10 | 6 | ffvelcdmda | |- ( ( ph /\ y e. I ) -> ( R ` y ) e. Grp ) |
| 11 | 4 | adantr | |- ( ( ph /\ y e. I ) -> S e. V ) |
| 12 | 5 | adantr | |- ( ( ph /\ y e. I ) -> I e. W ) |
| 13 | 6 | ffnd | |- ( ph -> R Fn I ) |
| 14 | 13 | adantr | |- ( ( ph /\ y e. I ) -> R Fn I ) |
| 15 | 7 | adantr | |- ( ( ph /\ y e. I ) -> F e. B ) |
| 16 | simpr | |- ( ( ph /\ y e. I ) -> y e. I ) |
|
| 17 | 1 2 11 12 14 15 16 | prdsbasprj | |- ( ( ph /\ y e. I ) -> ( F ` y ) e. ( Base ` ( R ` y ) ) ) |
| 18 | eqid | |- ( Base ` ( R ` y ) ) = ( Base ` ( R ` y ) ) |
|
| 19 | eqid | |- ( invg ` ( R ` y ) ) = ( invg ` ( R ` y ) ) |
|
| 20 | 18 19 | grpinvcl | |- ( ( ( R ` y ) e. Grp /\ ( F ` y ) e. ( Base ` ( R ` y ) ) ) -> ( ( invg ` ( R ` y ) ) ` ( F ` y ) ) e. ( Base ` ( R ` y ) ) ) |
| 21 | 10 17 20 | syl2anc | |- ( ( ph /\ y e. I ) -> ( ( invg ` ( R ` y ) ) ` ( F ` y ) ) e. ( Base ` ( R ` y ) ) ) |
| 22 | 21 | ralrimiva | |- ( ph -> A. y e. I ( ( invg ` ( R ` y ) ) ` ( F ` y ) ) e. ( Base ` ( R ` y ) ) ) |
| 23 | 1 2 4 5 13 | prdsbasmpt | |- ( ph -> ( ( y e. I |-> ( ( invg ` ( R ` y ) ) ` ( F ` y ) ) ) e. B <-> A. y e. I ( ( invg ` ( R ` y ) ) ` ( F ` y ) ) e. ( Base ` ( R ` y ) ) ) ) |
| 24 | 22 23 | mpbird | |- ( ph -> ( y e. I |-> ( ( invg ` ( R ` y ) ) ` ( F ` y ) ) ) e. B ) |
| 25 | 9 24 | eqeltrid | |- ( ph -> N e. B ) |
| 26 | 6 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( R ` x ) e. Grp ) |
| 27 | 4 | adantr | |- ( ( ph /\ x e. I ) -> S e. V ) |
| 28 | 5 | adantr | |- ( ( ph /\ x e. I ) -> I e. W ) |
| 29 | 13 | adantr | |- ( ( ph /\ x e. I ) -> R Fn I ) |
| 30 | 7 | adantr | |- ( ( ph /\ x e. I ) -> F e. B ) |
| 31 | simpr | |- ( ( ph /\ x e. I ) -> x e. I ) |
|
| 32 | 1 2 27 28 29 30 31 | prdsbasprj | |- ( ( ph /\ x e. I ) -> ( F ` x ) e. ( Base ` ( R ` x ) ) ) |
| 33 | eqid | |- ( Base ` ( R ` x ) ) = ( Base ` ( R ` x ) ) |
|
| 34 | eqid | |- ( +g ` ( R ` x ) ) = ( +g ` ( R ` x ) ) |
|
| 35 | eqid | |- ( 0g ` ( R ` x ) ) = ( 0g ` ( R ` x ) ) |
|
| 36 | eqid | |- ( invg ` ( R ` x ) ) = ( invg ` ( R ` x ) ) |
|
| 37 | 33 34 35 36 | grplinv | |- ( ( ( R ` x ) e. Grp /\ ( F ` x ) e. ( Base ` ( R ` x ) ) ) -> ( ( ( invg ` ( R ` x ) ) ` ( F ` x ) ) ( +g ` ( R ` x ) ) ( F ` x ) ) = ( 0g ` ( R ` x ) ) ) |
| 38 | 26 32 37 | syl2anc | |- ( ( ph /\ x e. I ) -> ( ( ( invg ` ( R ` x ) ) ` ( F ` x ) ) ( +g ` ( R ` x ) ) ( F ` x ) ) = ( 0g ` ( R ` x ) ) ) |
| 39 | 2fveq3 | |- ( y = x -> ( invg ` ( R ` y ) ) = ( invg ` ( R ` x ) ) ) |
|
| 40 | fveq2 | |- ( y = x -> ( F ` y ) = ( F ` x ) ) |
|
| 41 | 39 40 | fveq12d | |- ( y = x -> ( ( invg ` ( R ` y ) ) ` ( F ` y ) ) = ( ( invg ` ( R ` x ) ) ` ( F ` x ) ) ) |
| 42 | fvex | |- ( ( invg ` ( R ` x ) ) ` ( F ` x ) ) e. _V |
|
| 43 | 41 9 42 | fvmpt | |- ( x e. I -> ( N ` x ) = ( ( invg ` ( R ` x ) ) ` ( F ` x ) ) ) |
| 44 | 43 | adantl | |- ( ( ph /\ x e. I ) -> ( N ` x ) = ( ( invg ` ( R ` x ) ) ` ( F ` x ) ) ) |
| 45 | 44 | oveq1d | |- ( ( ph /\ x e. I ) -> ( ( N ` x ) ( +g ` ( R ` x ) ) ( F ` x ) ) = ( ( ( invg ` ( R ` x ) ) ` ( F ` x ) ) ( +g ` ( R ` x ) ) ( F ` x ) ) ) |
| 46 | 8 | fveq1i | |- ( .0. ` x ) = ( ( 0g o. R ) ` x ) |
| 47 | fvco2 | |- ( ( R Fn I /\ x e. I ) -> ( ( 0g o. R ) ` x ) = ( 0g ` ( R ` x ) ) ) |
|
| 48 | 13 47 | sylan | |- ( ( ph /\ x e. I ) -> ( ( 0g o. R ) ` x ) = ( 0g ` ( R ` x ) ) ) |
| 49 | 46 48 | eqtrid | |- ( ( ph /\ x e. I ) -> ( .0. ` x ) = ( 0g ` ( R ` x ) ) ) |
| 50 | 38 45 49 | 3eqtr4d | |- ( ( ph /\ x e. I ) -> ( ( N ` x ) ( +g ` ( R ` x ) ) ( F ` x ) ) = ( .0. ` x ) ) |
| 51 | 50 | mpteq2dva | |- ( ph -> ( x e. I |-> ( ( N ` x ) ( +g ` ( R ` x ) ) ( F ` x ) ) ) = ( x e. I |-> ( .0. ` x ) ) ) |
| 52 | 1 2 4 5 13 25 7 3 | prdsplusgval | |- ( ph -> ( N .+ F ) = ( x e. I |-> ( ( N ` x ) ( +g ` ( R ` x ) ) ( F ` x ) ) ) ) |
| 53 | fn0g | |- 0g Fn _V |
|
| 54 | ssv | |- ran R C_ _V |
|
| 55 | 54 | a1i | |- ( ph -> ran R C_ _V ) |
| 56 | fnco | |- ( ( 0g Fn _V /\ R Fn I /\ ran R C_ _V ) -> ( 0g o. R ) Fn I ) |
|
| 57 | 53 13 55 56 | mp3an2i | |- ( ph -> ( 0g o. R ) Fn I ) |
| 58 | 8 | fneq1i | |- ( .0. Fn I <-> ( 0g o. R ) Fn I ) |
| 59 | 57 58 | sylibr | |- ( ph -> .0. Fn I ) |
| 60 | dffn5 | |- ( .0. Fn I <-> .0. = ( x e. I |-> ( .0. ` x ) ) ) |
|
| 61 | 59 60 | sylib | |- ( ph -> .0. = ( x e. I |-> ( .0. ` x ) ) ) |
| 62 | 51 52 61 | 3eqtr4d | |- ( ph -> ( N .+ F ) = .0. ) |
| 63 | 25 62 | jca | |- ( ph -> ( N e. B /\ ( N .+ F ) = .0. ) ) |