This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| prdsbasmpt.b | |- B = ( Base ` Y ) |
||
| prdsbasmpt.s | |- ( ph -> S e. V ) |
||
| prdsbasmpt.i | |- ( ph -> I e. W ) |
||
| prdsbasmpt.r | |- ( ph -> R Fn I ) |
||
| Assertion | prdsbasmpt | |- ( ph -> ( ( x e. I |-> U ) e. B <-> A. x e. I U e. ( Base ` ( R ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsbasmpt.b | |- B = ( Base ` Y ) |
|
| 3 | prdsbasmpt.s | |- ( ph -> S e. V ) |
|
| 4 | prdsbasmpt.i | |- ( ph -> I e. W ) |
|
| 5 | prdsbasmpt.r | |- ( ph -> R Fn I ) |
|
| 6 | 1 2 3 4 5 | prdsbas2 | |- ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) ) |
| 7 | 6 | eleq2d | |- ( ph -> ( ( x e. I |-> U ) e. B <-> ( x e. I |-> U ) e. X_ x e. I ( Base ` ( R ` x ) ) ) ) |
| 8 | mptelixpg | |- ( I e. W -> ( ( x e. I |-> U ) e. X_ x e. I ( Base ` ( R ` x ) ) <-> A. x e. I U e. ( Base ` ( R ` x ) ) ) ) |
|
| 9 | 4 8 | syl | |- ( ph -> ( ( x e. I |-> U ) e. X_ x e. I ( Base ` ( R ` x ) ) <-> A. x e. I U e. ( Base ` ( R ` x ) ) ) ) |
| 10 | 7 9 | bitrd | |- ( ph -> ( ( x e. I |-> U ) e. B <-> A. x e. I U e. ( Base ` ( R ` x ) ) ) ) |