This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each point in a structure product restricts on each coordinate to the relevant base set. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| prdsbasmpt.b | |- B = ( Base ` Y ) |
||
| prdsbasmpt.s | |- ( ph -> S e. V ) |
||
| prdsbasmpt.i | |- ( ph -> I e. W ) |
||
| prdsbasmpt.r | |- ( ph -> R Fn I ) |
||
| prdsbasmpt.t | |- ( ph -> T e. B ) |
||
| prdsbasprj.j | |- ( ph -> J e. I ) |
||
| Assertion | prdsbasprj | |- ( ph -> ( T ` J ) e. ( Base ` ( R ` J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsbasmpt.b | |- B = ( Base ` Y ) |
|
| 3 | prdsbasmpt.s | |- ( ph -> S e. V ) |
|
| 4 | prdsbasmpt.i | |- ( ph -> I e. W ) |
|
| 5 | prdsbasmpt.r | |- ( ph -> R Fn I ) |
|
| 6 | prdsbasmpt.t | |- ( ph -> T e. B ) |
|
| 7 | prdsbasprj.j | |- ( ph -> J e. I ) |
|
| 8 | fveq2 | |- ( x = J -> ( T ` x ) = ( T ` J ) ) |
|
| 9 | 2fveq3 | |- ( x = J -> ( Base ` ( R ` x ) ) = ( Base ` ( R ` J ) ) ) |
|
| 10 | 8 9 | eleq12d | |- ( x = J -> ( ( T ` x ) e. ( Base ` ( R ` x ) ) <-> ( T ` J ) e. ( Base ` ( R ` J ) ) ) ) |
| 11 | 1 2 3 4 5 | prdsbas2 | |- ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) ) |
| 12 | 6 11 | eleqtrd | |- ( ph -> T e. X_ x e. I ( Base ` ( R ` x ) ) ) |
| 13 | elixp2 | |- ( T e. X_ x e. I ( Base ` ( R ` x ) ) <-> ( T e. _V /\ T Fn I /\ A. x e. I ( T ` x ) e. ( Base ` ( R ` x ) ) ) ) |
|
| 14 | 13 | simp3bi | |- ( T e. X_ x e. I ( Base ` ( R ` x ) ) -> A. x e. I ( T ` x ) e. ( Base ` ( R ` x ) ) ) |
| 15 | 12 14 | syl | |- ( ph -> A. x e. I ( T ` x ) e. ( Base ` ( R ` x ) ) ) |
| 16 | 10 15 7 | rspcdva | |- ( ph -> ( T ` J ) e. ( Base ` ( R ` J ) ) ) |