This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem hlop

Description: A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011)

Ref Expression
Assertion hlop
|- ( K e. HL -> K e. OP )

Proof

Step Hyp Ref Expression
1 hlol
 |-  ( K e. HL -> K e. OL )
2 olop
 |-  ( K e. OL -> K e. OP )
3 1 2 syl
 |-  ( K e. HL -> K e. OP )