This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the projective map of a Hilbert lattice at lattice unity. Part of Theorem 15.5.1 of MaedaMaeda p. 62. (Contributed by NM, 22-Oct-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmap1.u | |- .1. = ( 1. ` K ) |
|
| pmap1.a | |- A = ( Atoms ` K ) |
||
| pmap1.m | |- M = ( pmap ` K ) |
||
| Assertion | pmap1N | |- ( K e. OP -> ( M ` .1. ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmap1.u | |- .1. = ( 1. ` K ) |
|
| 2 | pmap1.a | |- A = ( Atoms ` K ) |
|
| 3 | pmap1.m | |- M = ( pmap ` K ) |
|
| 4 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 5 | 4 1 | op1cl | |- ( K e. OP -> .1. e. ( Base ` K ) ) |
| 6 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 7 | 4 6 2 3 | pmapval | |- ( ( K e. OP /\ .1. e. ( Base ` K ) ) -> ( M ` .1. ) = { p e. A | p ( le ` K ) .1. } ) |
| 8 | 5 7 | mpdan | |- ( K e. OP -> ( M ` .1. ) = { p e. A | p ( le ` K ) .1. } ) |
| 9 | 4 2 | atbase | |- ( p e. A -> p e. ( Base ` K ) ) |
| 10 | 4 6 1 | ople1 | |- ( ( K e. OP /\ p e. ( Base ` K ) ) -> p ( le ` K ) .1. ) |
| 11 | 9 10 | sylan2 | |- ( ( K e. OP /\ p e. A ) -> p ( le ` K ) .1. ) |
| 12 | 11 | ralrimiva | |- ( K e. OP -> A. p e. A p ( le ` K ) .1. ) |
| 13 | rabid2 | |- ( A = { p e. A | p ( le ` K ) .1. } <-> A. p e. A p ( le ` K ) .1. ) |
|
| 14 | 12 13 | sylibr | |- ( K e. OP -> A = { p e. A | p ( le ` K ) .1. } ) |
| 15 | 8 14 | eqtr4d | |- ( K e. OP -> ( M ` .1. ) = A ) |