This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of the GLB of a set of lattice elements S . Variant of Theorem 15.5.2 of MaedaMaeda p. 62. Allows S = (/) . (Contributed by NM, 21-Jan-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapglb2.b | |- B = ( Base ` K ) |
|
| pmapglb2.g | |- G = ( glb ` K ) |
||
| pmapglb2.a | |- A = ( Atoms ` K ) |
||
| pmapglb2.m | |- M = ( pmap ` K ) |
||
| Assertion | pmapglb2N | |- ( ( K e. HL /\ S C_ B ) -> ( M ` ( G ` S ) ) = ( A i^i |^|_ x e. S ( M ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapglb2.b | |- B = ( Base ` K ) |
|
| 2 | pmapglb2.g | |- G = ( glb ` K ) |
|
| 3 | pmapglb2.a | |- A = ( Atoms ` K ) |
|
| 4 | pmapglb2.m | |- M = ( pmap ` K ) |
|
| 5 | hlop | |- ( K e. HL -> K e. OP ) |
|
| 6 | eqid | |- ( 1. ` K ) = ( 1. ` K ) |
|
| 7 | 2 6 | glb0N | |- ( K e. OP -> ( G ` (/) ) = ( 1. ` K ) ) |
| 8 | 7 | fveq2d | |- ( K e. OP -> ( M ` ( G ` (/) ) ) = ( M ` ( 1. ` K ) ) ) |
| 9 | 6 3 4 | pmap1N | |- ( K e. OP -> ( M ` ( 1. ` K ) ) = A ) |
| 10 | 8 9 | eqtrd | |- ( K e. OP -> ( M ` ( G ` (/) ) ) = A ) |
| 11 | 5 10 | syl | |- ( K e. HL -> ( M ` ( G ` (/) ) ) = A ) |
| 12 | 2fveq3 | |- ( S = (/) -> ( M ` ( G ` S ) ) = ( M ` ( G ` (/) ) ) ) |
|
| 13 | riin0 | |- ( S = (/) -> ( A i^i |^|_ x e. S ( M ` x ) ) = A ) |
|
| 14 | 12 13 | eqeq12d | |- ( S = (/) -> ( ( M ` ( G ` S ) ) = ( A i^i |^|_ x e. S ( M ` x ) ) <-> ( M ` ( G ` (/) ) ) = A ) ) |
| 15 | 11 14 | syl5ibrcom | |- ( K e. HL -> ( S = (/) -> ( M ` ( G ` S ) ) = ( A i^i |^|_ x e. S ( M ` x ) ) ) ) |
| 16 | 15 | adantr | |- ( ( K e. HL /\ S C_ B ) -> ( S = (/) -> ( M ` ( G ` S ) ) = ( A i^i |^|_ x e. S ( M ` x ) ) ) ) |
| 17 | 1 2 4 | pmapglb | |- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> ( M ` ( G ` S ) ) = |^|_ x e. S ( M ` x ) ) |
| 18 | simpr | |- ( ( ( K e. HL /\ S C_ B ) /\ x e. S ) -> x e. S ) |
|
| 19 | simpll | |- ( ( ( K e. HL /\ S C_ B ) /\ x e. S ) -> K e. HL ) |
|
| 20 | ssel2 | |- ( ( S C_ B /\ x e. S ) -> x e. B ) |
|
| 21 | 20 | adantll | |- ( ( ( K e. HL /\ S C_ B ) /\ x e. S ) -> x e. B ) |
| 22 | 1 3 4 | pmapssat | |- ( ( K e. HL /\ x e. B ) -> ( M ` x ) C_ A ) |
| 23 | 19 21 22 | syl2anc | |- ( ( ( K e. HL /\ S C_ B ) /\ x e. S ) -> ( M ` x ) C_ A ) |
| 24 | 18 23 | jca | |- ( ( ( K e. HL /\ S C_ B ) /\ x e. S ) -> ( x e. S /\ ( M ` x ) C_ A ) ) |
| 25 | 24 | ex | |- ( ( K e. HL /\ S C_ B ) -> ( x e. S -> ( x e. S /\ ( M ` x ) C_ A ) ) ) |
| 26 | 25 | eximdv | |- ( ( K e. HL /\ S C_ B ) -> ( E. x x e. S -> E. x ( x e. S /\ ( M ` x ) C_ A ) ) ) |
| 27 | n0 | |- ( S =/= (/) <-> E. x x e. S ) |
|
| 28 | df-rex | |- ( E. x e. S ( M ` x ) C_ A <-> E. x ( x e. S /\ ( M ` x ) C_ A ) ) |
|
| 29 | 26 27 28 | 3imtr4g | |- ( ( K e. HL /\ S C_ B ) -> ( S =/= (/) -> E. x e. S ( M ` x ) C_ A ) ) |
| 30 | 29 | 3impia | |- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> E. x e. S ( M ` x ) C_ A ) |
| 31 | iinss | |- ( E. x e. S ( M ` x ) C_ A -> |^|_ x e. S ( M ` x ) C_ A ) |
|
| 32 | 30 31 | syl | |- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> |^|_ x e. S ( M ` x ) C_ A ) |
| 33 | sseqin2 | |- ( |^|_ x e. S ( M ` x ) C_ A <-> ( A i^i |^|_ x e. S ( M ` x ) ) = |^|_ x e. S ( M ` x ) ) |
|
| 34 | 32 33 | sylib | |- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> ( A i^i |^|_ x e. S ( M ` x ) ) = |^|_ x e. S ( M ` x ) ) |
| 35 | 17 34 | eqtr4d | |- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> ( M ` ( G ` S ) ) = ( A i^i |^|_ x e. S ( M ` x ) ) ) |
| 36 | 35 | 3expia | |- ( ( K e. HL /\ S C_ B ) -> ( S =/= (/) -> ( M ` ( G ` S ) ) = ( A i^i |^|_ x e. S ( M ` x ) ) ) ) |
| 37 | 16 36 | pm2.61dne | |- ( ( K e. HL /\ S C_ B ) -> ( M ` ( G ` S ) ) = ( A i^i |^|_ x e. S ( M ` x ) ) ) |