This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of a meet. (Contributed by NM, 25-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapmeet.b | |- B = ( Base ` K ) |
|
| pmapmeet.m | |- ./\ = ( meet ` K ) |
||
| pmapmeet.a | |- A = ( Atoms ` K ) |
||
| pmapmeet.p | |- P = ( pmap ` K ) |
||
| Assertion | pmapmeet | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( P ` ( X ./\ Y ) ) = ( ( P ` X ) i^i ( P ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapmeet.b | |- B = ( Base ` K ) |
|
| 2 | pmapmeet.m | |- ./\ = ( meet ` K ) |
|
| 3 | pmapmeet.a | |- A = ( Atoms ` K ) |
|
| 4 | pmapmeet.p | |- P = ( pmap ` K ) |
|
| 5 | eqid | |- ( glb ` K ) = ( glb ` K ) |
|
| 6 | simp1 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> K e. HL ) |
|
| 7 | simp2 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 8 | simp3 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 9 | 5 2 6 7 8 | meetval | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( ( glb ` K ) ` { X , Y } ) ) |
| 10 | 9 | fveq2d | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( P ` ( X ./\ Y ) ) = ( P ` ( ( glb ` K ) ` { X , Y } ) ) ) |
| 11 | prssi | |- ( ( X e. B /\ Y e. B ) -> { X , Y } C_ B ) |
|
| 12 | 11 | 3adant1 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> { X , Y } C_ B ) |
| 13 | prnzg | |- ( X e. B -> { X , Y } =/= (/) ) |
|
| 14 | 13 | 3ad2ant2 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> { X , Y } =/= (/) ) |
| 15 | 1 5 4 | pmapglb | |- ( ( K e. HL /\ { X , Y } C_ B /\ { X , Y } =/= (/) ) -> ( P ` ( ( glb ` K ) ` { X , Y } ) ) = |^|_ x e. { X , Y } ( P ` x ) ) |
| 16 | 6 12 14 15 | syl3anc | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( P ` ( ( glb ` K ) ` { X , Y } ) ) = |^|_ x e. { X , Y } ( P ` x ) ) |
| 17 | fveq2 | |- ( x = X -> ( P ` x ) = ( P ` X ) ) |
|
| 18 | fveq2 | |- ( x = Y -> ( P ` x ) = ( P ` Y ) ) |
|
| 19 | 17 18 | iinxprg | |- ( ( X e. B /\ Y e. B ) -> |^|_ x e. { X , Y } ( P ` x ) = ( ( P ` X ) i^i ( P ` Y ) ) ) |
| 20 | 19 | 3adant1 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> |^|_ x e. { X , Y } ( P ` x ) = ( ( P ` X ) i^i ( P ` Y ) ) ) |
| 21 | 10 16 20 | 3eqtrd | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( P ` ( X ./\ Y ) ) = ( ( P ` X ) i^i ( P ` Y ) ) ) |