This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ply1scl1 as of 12-Mar-2025. (Contributed by Stefan O'Rear, 29-Mar-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | |- P = ( Poly1 ` R ) |
|
| ply1scl.a | |- A = ( algSc ` P ) |
||
| ply1scl0.z | |- .0. = ( 0g ` R ) |
||
| ply1scl0.y | |- Y = ( 0g ` P ) |
||
| Assertion | ply1scl0OLD | |- ( R e. Ring -> ( A ` .0. ) = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scl.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1scl.a | |- A = ( algSc ` P ) |
|
| 3 | ply1scl0.z | |- .0. = ( 0g ` R ) |
|
| 4 | ply1scl0.y | |- Y = ( 0g ` P ) |
|
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 5 3 | ring0cl | |- ( R e. Ring -> .0. e. ( Base ` R ) ) |
| 7 | 1 | ply1sca2 | |- ( _I ` R ) = ( Scalar ` P ) |
| 8 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 9 | 8 5 | strfvi | |- ( Base ` R ) = ( Base ` ( _I ` R ) ) |
| 10 | eqid | |- ( .s ` P ) = ( .s ` P ) |
|
| 11 | eqid | |- ( 1r ` P ) = ( 1r ` P ) |
|
| 12 | 2 7 9 10 11 | asclval | |- ( .0. e. ( Base ` R ) -> ( A ` .0. ) = ( .0. ( .s ` P ) ( 1r ` P ) ) ) |
| 13 | 6 12 | syl | |- ( R e. Ring -> ( A ` .0. ) = ( .0. ( .s ` P ) ( 1r ` P ) ) ) |
| 14 | fvi | |- ( R e. Ring -> ( _I ` R ) = R ) |
|
| 15 | 14 | fveq2d | |- ( R e. Ring -> ( 0g ` ( _I ` R ) ) = ( 0g ` R ) ) |
| 16 | 3 15 | eqtr4id | |- ( R e. Ring -> .0. = ( 0g ` ( _I ` R ) ) ) |
| 17 | 16 | oveq1d | |- ( R e. Ring -> ( .0. ( .s ` P ) ( 1r ` P ) ) = ( ( 0g ` ( _I ` R ) ) ( .s ` P ) ( 1r ` P ) ) ) |
| 18 | 1 | ply1lmod | |- ( R e. Ring -> P e. LMod ) |
| 19 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
| 20 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 21 | 20 11 | ringidcl | |- ( P e. Ring -> ( 1r ` P ) e. ( Base ` P ) ) |
| 22 | 19 21 | syl | |- ( R e. Ring -> ( 1r ` P ) e. ( Base ` P ) ) |
| 23 | eqid | |- ( 0g ` ( _I ` R ) ) = ( 0g ` ( _I ` R ) ) |
|
| 24 | 20 7 10 23 4 | lmod0vs | |- ( ( P e. LMod /\ ( 1r ` P ) e. ( Base ` P ) ) -> ( ( 0g ` ( _I ` R ) ) ( .s ` P ) ( 1r ` P ) ) = Y ) |
| 25 | 18 22 24 | syl2anc | |- ( R e. Ring -> ( ( 0g ` ( _I ` R ) ) ( .s ` P ) ( 1r ` P ) ) = Y ) |
| 26 | 13 17 25 | 3eqtrd | |- ( R e. Ring -> ( A ` .0. ) = Y ) |